Interconnection Study Criteria

Horea Catanase – Electric Power Engineers (EPE) Supported by: Kalyan Chilukuri

Introduction and Agenda

Part 1	Termir
Part 2	Dispate
Part 3	NOPR

nology & Definitions

ch Methodologies (SPP and MISO)

Proposals

Terminology & Definitions

ERIS & NRIS

- Energy Resource Interconnection Service (ERIS) shall mean an Interconnection Service that allows the Interconnection Customer to connect its Generating Facility to the Transmission Provider's Transmission System to be eligible to deliver the Generating Facility's electric output using the existing firm or non-firm capacity of the Transmission Provider's Transmission System on an as available basis. Energy Resource Interconnection Service in and of itself does not convey transmission service
- Network Resource Interconnection Service (NRIS) shall mean an Interconnection Service that allows the Interconnection Customer to integrate its Large Generating Facility with the Transmission Provider's Transmission System (1) in a manner comparable to that in which the Transmission Provider integrates its generating facilities to serve native load customers; or (2) in an RTO or ISO with market based congestion management, in the same manner as Network Resources. Network Resource Interconnection Service in and of itself does not convey transmission service.

https://www.ferc.gov/sites/default/files/2020-04/LGIP-procedures 0.pdf

Fuel Based Dispatch & Flowgate Screening

- Fuel Based Dispatch Resource are dispatched at predefined levels based on technology type and the load levels of cases used (e.g. wind resources will be dispatched at different levels compared to solar resources depending on the season and loading level of the case used)
- Flowgate Screening Dynamic dispatch whereby generators are re-dispatched in order to overload a flowgate (monitored element / contingency pair). Several methods available (harmers to reference, harmers to helpers, etc).

Load Levels

Cases & Dispatch Methodologies

Request Types and Cases Used

- Interconnection Requests can be studied for Energy Resource Interconnection Service (ERIS) and/or Network Resource Interconnection Service (NRIS) >All new projects must be studied for ERIS but do not need to request NRIS
- SPP runs thermal and voltage analysis for both ERIS and NRIS requests
- Prior Queued (PQ) and Current Queue (CQ) models are created to study these requests. These models are created for the following years and seasons:
 - **Year 2** Summer Peak
 - **Year 5** Light Load, Summer Peak & Winter Peak

Request Types and Cases Used

• To simulate and analyze the variety of generation and service types included in a DISIS cluster, three dispatch scenarios are developed for both the prior-queued and current-queued model sets.

High-Variable Energy Resource (HVER)

Reflect scenarios in which Variable Energy Resources are generating at high levels and conventional resources are at relatively low levels. HVER scenarios are developed for summer and winter peak and light load seasons and evaluate both ERIS-only and NRIS requests

Low-Variable Energy Resource (LVER)

Reflect scenarios in which Variable Energy Resources are generating at low levels and conventional resources are at relatively high levels. LVER scenarios are developed for summer and winter peak seasons only and evaluate both ERIS-only and NRIS requests

Network Resource (NR)

Reflect scenarios in which NRIS generator output is maximized and ERIS-only generator output is minimized. NR scenarios are developed for summer and winter peak and light load seasons and evaluate only NRIS requests

SPP Grouping

Group #	Area
1	SPP North
2	SPP North Central
3	SPP Central
4	SPP Southeast
5	SPP Southwest

Case Development and Dispatch Assumptions

- Integrated Transmission Planning (ITP) base reliability powerflow models serve as the starting point for all steady-state interconnection studies
- To maintain generation-load balance, generation dispatched per fuel-based dispatch must be displaced by online generation within SPP.
- For HVER and LVER scenarios additional generation is offset by reducing the dispatch of ITP Generators across the entire SPP footprint based on the load-ratio share of the TO powerflow modeling areas
- For NRIS light load scenarios additional generation is offset by reducing the dispatch of ITP Generators excluding the respective host zone of each request
- For NRIS summer and winter peak scenarios additional generation is offset by reducing the dispatch of ITP Generators across the entire SPP footprint based on the load-ratio share of the powerflow areas
- For non-SPP footprints additional generation is offset using a uniform scale across all non-queued, dispatched units in the target footprint

Load Ratio Share (LRS) Calculations

- Light Load Calculations:
 - Calculate the total SPP load in each applicable case
 - For the following areas, use load/2 in the following steps
 - 531, 524, 544, 545, 650
 - Calculate total load for current SPP control area
 - Reduce the SPP load by the amount of the control areas load
 - Calculate LRS for all other SPP areas by the following formula:

Load Ratio Share (per area) = $\frac{\sum III Cu Louu}{\sum Host System Load - \sum Local Area Load}$

- Summer and Winter Calculations:
 - Calculate the total SPP load in each applicable case
 - Calculate LRS for all other SPP areas by the following formula:

 \sum Area Load Load Ratio Share (per area) = $\frac{2}{\sum Host System Load}$

 \sum Area Load

Case Development – Fuel Based Dispatch

	In-Group							Out-Group						
Fuel Type	Summ	Summer Peak		Winter Peak		Light Load		Summer Peak		Winter Peak		Light Load		
	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ		
Combined Cycle	0%	0%	0%	0%	0%	0%	NC	0%	NC	0%	NC	0%		
Combustion Turbine	0%	0%	0%	0%	0%	0%	NC	0%	NC	0%	NC	0%		
Diesel Engine	0%	0%	0%	0%	0%	0%	NC	0%	NC	0%	NC	0%		
Hydro	50%	50%	50%	50%	50%	100%	NC	0%	NC	0%	NC	0%		
Nuclear	100%	100%	100%	100%	100%	100%	NC	0%	NC	0%	NC	0%		
Storage	0%	100%	0%	100%	0%	0%	NC	0%	NC	0%	NC	0%		
Coal	0%	0%	0%	0%	0%	0%	NC	0%	NC	0%	NC	0%		
Oil	0%	0%	0%	0%	0%	0%	NC	0%	NC	0%	NC	0%		
Waste Heat	0%	0%	0%	0%	0%	0%	NC	0%	NC	0%	NC	0%		
Wind	40%	100%	45%	100%	75%	100%	NC	20%	NC	20%	NC	60%		
Solar	40%	100%	10%	100%	0%	0%	NC	40%	NC	10%	NC	0%		
Hybrid						See Hybrid	d Example							

			In-G	roup		Out-Group							
Fuel Type	Summ	Summer Peak		Winter Peak		Light Load		Summer Peak		Winter Peak		Light Load	
	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	
Combined Cycle	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Combustion Turbine	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Diesel Engine	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Hydro	50%	50%	50%	50%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Nuclear	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Storage	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Coal	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Oil	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Waste Heat	100%	100%	100%	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Wind	20%	20%	20%	20%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Solar	40%	40%	10%	10%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Hybrid						See Hybri	d Example						

HVER Dispatch

LVER Dispatch

Case Development – Fuel Based Dispatch

NRIS Dispatch

			In-G	roup		Out-Group							
Fuel Type	Summe	er Peak	Winter Peak		Light	Light Load		Summer Peak		Winter Peak		Light Load	
	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	PQ	CQ	
Combined Cycle	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Combustion Turbine	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Diesel Engine	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Hydro	50%	50%	50%	50%	50%	100%	N/A	N/A	N/A	N/A	NC	0%	
Nuclear	100%	100%	100%	100%	100%	100%	N/A	N/A	N/A	N/A	NC	0%	
Storage	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Coal	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Oil	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Waste Heat	100%	100%	100%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Wind	20%	100%	20%	100%	60%	100%	N/A	N/A	N/A	N/A	NC	60%	
Solar	40%	100%	10%	100%	0%	0%	N/A	N/A	N/A	N/A	NC	0%	
Hybrid						See Hybri	d Example						

Case Development – Hybrid Example

	Prior-Queued Hybrid Example (HVER Model)											
Hybrid Request	Hybrid Request Capacity	Туре	Installed Capacity (MW)	Summer Peak (MW)	nmer Peak (MW) Winter Peak (MW)							
		Solar	50	40%*50 = 20	10%*50 = 5	0%*50 = 0						
1	100 MW	Wind	100	40%*100 = 40	45%*100 = 45	75%*100 = 75						
		Total	150	60	50	75						
		Storage	100	0%*100 = 0	0%*100 = 0	0%*100 = 0						
2	190 MW	Wind	200	40*200 = 80	45%*200 = 90	75*200 = 120						
		Total	300	80	90	150						

Study Hybrid Example (HVER Model)

Hybrid Request	Hybrid Request Capacity	Туре	Installed Capacity (MW)	Summer Peak (MW)	Winter Peak (MW)	Light Load (MW)		
		Solar	50	100%*50 = <mark>50 →</mark> 33	100%*50 = <mark>50 →</mark> 33	0%*50 = 0		
1	100 MW	Wind	100	100%*100 = <mark>100 →</mark> 67	100%*100 = <mark>100 →</mark> 67	100%*100 = 100		
		Total	150	150 → 100	150 → 100	100		
		Storage	100	100%*100 = <mark>100 →</mark> 63	100%*100 = <mark>100 →</mark> 63	0%*100 = 0		
2	190 MW	Wind	200	100%*200 = <mark>200 →</mark> 127	100%*200 = <mark>200 →</mark> 127	100*200 = <mark>200 →</mark> 190		
		Total	300	300 → 190	300 → 190 300 → 190			

Request Types, Cases Used and Analysis

- Developers can request ERIS, NRIS or partial NRIS. NRIS can never exceed the ERIS value for a plant
- MISO runs thermal and voltage analysis for ERIS requests and a deliverability analysis for NRIS requests.
 - Deliverability analysis based on "flowgate screening" which includes a dynamic dispatch for each flowgate (monitored element / contingency pair) to identify worst possible dispatch (criteria discussed in later slides)
- Bench and Study cases are created for the ERIS analysis based on two loading scenarios (Summer Peak and Shoulder). The NRIS model used is based on a Summer Peak loading scenario.

ERIS Cases and Dispatch

- MISO Transmission Expansion Plan (MTEP) models used as starting point. Existing generators and generators with signed IA dispatched based on MTEP 5 year out LBA Dispatch
- Bench Case DPP higher queued projects without a GIA added to case & dispatched based on their fuel type such that higher queued projects in MISO Classic are sunk into MISO Classic and higher queued projects in MISO South are sunk in MISO South (MTEP existing units scaled down)
- Study Case (post DPP projects) based on bench case with study generators dispatched based on fuel type scaling down non-study generators in MISO South and MISO Classic by the MW amount added (MTEP existing units and prior queued generation)

NRIS Cases and Dispatch

- Based on ERIS model with upgrades included
- ERIS only generators turned off and NRIS generation set to at least pgen = 0 such that total generation in MISO Classic and South in the deliverability model is equal to the total generation in these regions for the study model
- ERIS generators with firm transmission treated as NRIS generators
- NRIS units ramped up automatically based on flowgate screening approach (5% DFAX and Top 30 cutoff) with 8000 MW cap. To compensate for the increase in system generation, the rest of MISO system is uniformly scaled down

MTEP 5 year out LBA dispatch

- Hydro: 5-year seasonal average (EIA 923)
- Renewables (Wind, Solar): Dispatched to Seasonal level or Capacity Credit Level. Currently both are capacity credit level by unit, unless information is unavailable for said unit, where the system wide capacity credit level is used.
- Dispatch algorithm will maintain desired Area Interchange.
- Firm Resources (NR, ER w/TSR), dispatched by LBA Tier Order to satisfy each areas generation requirement. Area swing last unit committed

ERIS Fuel Based Dispatch

Table 6-1 Dispatch per Fuel Type for Study and Higher Queued Generators (without a GIA)

• •											
Fuel Type under Study and	Summer Peak Dispatched as % of	Shoulder Peak Dispatched as % of		Existing	Study	Study	a , 1				
Higher Queued	Interconnection Service	Interconnection Service	Scenario	Generator 1	Generator 2 (Wind	Generator 3 (Wind	Study Generator 4	Interconnection	Steady State	Steady State	NRIS or Deliverability
Combined Cycle	100%	50%	Cochario	(Wind, Solar, CC etc.)	Solar, CC	Solar, CC	(Storage)	Requested	(Shoulder Peak) ²⁷	Peak) ²⁸	(Summer Peak)
Combustion Turbine	100%	0%			etc.)	etc.)					
Diesel Engines	100%	0%	1	0	50	100	0	120	MIN (fuel type dispa	tch of both study	MIN (max. MW output of
Hydro	100%	100%	1	0	50	100	0	120	generators	s, 120)	120)
Nuclear	100%	100%							Discharging: MIN (fu	uel type dispatch	Discharging: MIN (max.
Storage ⁹	100% ¹⁰	+/- 100%	2	0	100	0	+/-50	120	of both study generators, 120) Charging: – fuel type dispatch of storage (non-storage offline)		MW output of both study
Steam – Coal	100%	100%									
Oil	100%	0%							Discharging: MIN (fu	el type dispatch	Discharging: MIN (max
Wasta Heat	100%	100%	3	100	0	0	+/-50	120	of storage	e, 120)	existing gen. MW + max.
	100 %	100 %							Charging: - fuel ty	pe dispatch of	storage MW, 120)
Wind	15.6% ¹¹	100%							storage (non-sto	orage offline)	
Solar	100%	0% ¹²							Discharging: Fuel t	ype dispatch of enerators	Discharging: Max. MW
Hybrid Eacility ¹³ (Apy	Based on above dispatch assumptions	Based on above dispatch assumptions	4	0	100	0	+/-50	150	Charging: – fuel ty	pe dispatch of	output of both study
combination of the above fuel	of each fuel type with any adjustment	of each fuel type with any adjustment							storage (non-sto	orage offline)	generators
types)	based on requested interconnection	based on requested interconnection	F	0	50	100	0	150	Fuel type dispatch	n of both study	Max. MW output of both
types/	Sased on requested interconnection	Sarviss ¹⁵	5	0	50	100	0	150	general	tors	study generators
	Service	Service							1		

NOPR Dispatch Proposals

NOPR Dispatch Proposals

- A lot of focus on how storage and hybrid projects are treated in interconnection studies
- FERC found that unrealistic operating assumptions can result in excessive and unnecessary upgrades
- Proposal to require transmission provider to use operating assumptions for interconnection studies if interconnection customers request this (e.g. whether a resource will charge or not during peak load)
- The proposal does include a provision which allows transmission providers to hold interconnection customers to intended operation of their plant
- NOPR also seeks comments on whether the Commission should: \geq Expand proposal to tackle transmission providers studying scenarios that are not physically possible (solar on at night) > Define the peak load period
 - > Define firm and non-firm charging and require defined study criteria

Thank you Contact for questions/information hcatanase@epeconsulting.com

