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A Logical Outline
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Grid - objective

To maintain energy supply demand balance reliably in a
wide range of conditions on a continuous basis across time

and space and to do so in the most economic way possible.



Services

- ol ada g

‘,\I‘“ . - ’ |
3
\ 4 /
' L ‘ ?& .
i . Oyu g0 /
Al /
7

-t ,)
o~ /

/ / r ; 5 //,“
4 <2 y £
/ ,’““f y £

In economics, a service is a transaction in which no physical goods are transferred from the seller to the buyer. The benefits
of such a service are held to be demonstrated by the buyer's willingness to make the exchange. Public services are those
that society (nation state, fiscal union, region) as a whole pays for. Using resources, skill, ingenuity, and experience, service

providers benefit service consumers. Service is intangible in nature.



Supply demand balance ... wide range of

conditions....economic
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How do we deal with contingencies ?

many grid services are designed to deal with this type of uncertainity

50 Hz

Frequency (Hz)

Stabilize df/dt and df:
e 6 second contingency FCAS
* Generator inertial response

e ROCOF area of concern
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Recover frequency to 50 Hz:

Frequency Regulation to 50 Hz:
¢ Active Power Control
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Future - forecasting
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Inertia market & salt
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Fig. 6. Illustration of the frequency-based constraints.

Doherty, R., Lalor, G. and O’Malley, M.J., “Frequency Control in Competitive Electricity
Market Dispatch”, IEEE Transactions on Power Systems”, Vol. 20, pp. 1588 - 1596, 2005.
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Energy system integration is the process of coordinating the operation and planning of energy systems across multiple pathways and/or
geographical scales to deliver reliable, cost-effective energy services with minimal impact on the environment.

O’Malley, M.J., Kroposki, B., Hannegan, B., Madsen, H., Andersson, M., D’haeseleer, W., McGranaghan, M., Dent, C., Strbac, G., Baskaran, S. and Rinker, M., “Energy System Integration Defining and Describing the Value Proposition”, NREL Technical Report NREL/TP-5D00-66616, June 2016.



Then we electrify heat

—e—Load-Shifting Resource Operation (MW)
—m—Heat Output (MW)

== Heating Requirement (MW)
=f=Thermal Energy Storage (MWh)

400 - 800
300 - 600 E
E o
= g
w 200 400 8
4 w
: ——>
& &
100 200 E Reserve provision
= Heater ON — call Heater OFF to provide
0 0 thermal comfort reserve — might cause
11:00 16:00 21:00 02:00 07:00 thermal discomfort

Time

S. Nolan, O Neu, M O'Malley. "Capacity value estimation of a load-shifting resource using a coupled building and power system model", Applied Energy, Vol. 192, pp. 71 -82, 2017.



What is value ?




Value decrease

¢ System Value

System Value (Curve Fit)
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Figure 4-7. Storage operational value as a function of size for an energy-only device

Denholm, P., Jorgenson, J., Hummon, M., Palchak, D., Kirby, B., Ma, O. and O’Malley, M.J., “The Impact of Wind and Solar on the Value of Energy Storage”, National Renewable
Energy Laboratory, Technical Paper NREL/TP -6A20-60568, November, 2013. http://www.nrel.gov/docs/fyl4osti/60568.pdf



European Academies

Round trip efficiency ei i : i ‘ (
Charge Discharge A 2

Science Advisory Council

X * Ec kWh Y * Ed kWh
E Academies
. S § e Advi: Council
Charge Discharge et ‘
losses losses

Valuing dedicated storage in electricity grids
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Graph 1. The cost evolution of vehicle batteries.
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Conclusions: what should be done to e
ensure that storage is used effectively? ea
Science Advisory Council

1) Electricity market design should deliver price signals (locational and temporal) which
encourage investments in cost-efficient flexibility options on both transmission and

distribution grids.

2) Electricity market design should not create barriers to the deployment of potentially
valuable systems and technologies (including storage).

3) Electricity market design should address PV plus battery systems on distribution grids.
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Conclusions

We need to understand what we are talking about

Define and agree the objective, levels of reliability and the
boundaries

If it can competitively contribute to the objective it has value
It is generic, its value may be limited and it may have no value

There is no single best answer — we just need one that is good
enough
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