UVIG Tutorial on Integration of Uncertainty Forecasts into the Power System Operations

Part 1: Background, Methods, and Meaning of Uncertainty Forecasts

Overview of Techniques and Issues Associated with Probabilitstic Forecasting

Sue Ellen Haupt

National Center for Atmospheric Research Research Applications Laboratory

UVIG Forecasting Workshop Tutorial

Atlanta, GA

June 20, 2017

The Plan

- Why do we need probabilistic forecasts?
- How do we construct ensembles?
- How can we tell if the ensemble is "good"?
- How can we make an imperfect ensemble better?
- How can we extract information from uncertainty information from forecasts?
- What else do we need to know?

We wish to predict specific events

8/03/09 771mw up-ramp from 20:10 - 22:10 followed by a 738mw down-ramp from 22:40 - 00:50

Time (LST)

Why is Atmospheric Flow Subject to Uncertainy?

Ed Lorenz

- Nonlinearity
- Sensitivity to initial conditions
- Chaos → There are limits to predictability
- Think in terms of attractors & manifolds
- Requires probabilistic forecasts

Ensembles & Uncertainty Quantification

- Account for uncertainties due to imperfect initial conditions and model formulation
- Produce more accurate predictions than any single model realization
- Provide flowdependent uncertainty estimates

Short Range Ensemble Forecast System

30 hr forecast

10 m Wind 500 mb Height

How are Ensembles Generated?

- Perturb initial conditions
- Different boundary conditions
- Include different physics
- Different models

How Many Members are Needed?

Good spread-error correlation only with very large ensembles (order hundreds). From Kolczynski et al. (2011, MWR)).

Can we reduce that number?

- 10 member ensemble with nearly same CRPS value as 42 member ensemble
- Lower CRPS with calibration (Bayesian Model Averaging)

What if we had only one member? Analog Prediction

Spread-skill relathionship

Luca Delle Monache

How do we determine a Good Match?

• Since probabilistic, need to evaluate based on large number of forecasts Spread-skill

The Brier Score

• Mean square error of a probability forecast

$$BS = \frac{1}{n} \sum_{i=1}^{n} (f_i - x_i)^{n}$$

n is the number of forecasts where f_i is the forecast prob on occasion i x_i is the observation (0 or 1) on occasion *i*

Resolution

Distinguish

different events

• Weights larger errors more than smaller ones

0.3

Reliability

Frequency

matches actual

Jared Lee

Variability of

Observations

Continuous Ranked Probability Score

How do we improve the Match?

- Centered (the right answer)
- Sharp (narrow range)
- Reliable (quantile predicted matches quantile observed averaged over time)

Example Calibration

Example Calibration Techniques

• Linear Variance Calibration

- Ensemble Kalman Filter
- Quantile Regression
- Bayesian Model Averaging
- Kernal Density Methods
- Analogue Method
- Many others, including logistic regression, nonhomogeneous Gaussian regression, EMOS,

Aviation decision making—constraint

14

Matt Wandishin

Comparing the Two Strategies Over Time

3TIER P70 and 50% scaled forecast similar risk exposure (27% vs. 28%) 3TIER P70 scheduled 20.5 GWh more energy than scaled forecast! *Reliable risk and more energy scheduled, day-ahead

Eric Grimit

© Vaisala

Making Actionable Decisions From Probabilistic Forecasts

[–] Erik Ela

Summary

The atmosphere is inherently Chaotic

- Ensemble prediction embraces and quantifies the uncertainty, producing
 - > Better mean forecasts
 - Estimates of uncertainty
- >The ensemble should be calibrated
- Research is showing
 - Better ways of creating ensembles
 - Better ways of blending ensemble information via postprocessing

Such probabilistic forecasts can enhance decision-making

