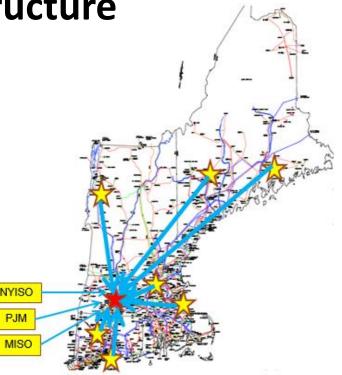
ESIG/G-PST SPECIAL TOPIC WORKSHOP, TUCSON, AR. MARCH 28, 2024

Experience with Oscillations in ISO New England

ISO-NE PUBLIC



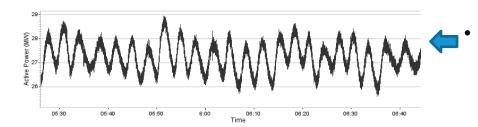
TECHNICAL MANAGER, ADVANCED TECHNOLOGY SOLUTIONS

Measurements: PMU Infrastructure

- ~100 PMUs and constantly growing
- Full observability of 345 kV with some redundancy
- Selected PMU data from NYISO, PJM and MISO; adding TVA, SOCO,SPP
- 30 samples/s
- New: requirement to add PMU at every utility scale IBR installation

Good system observability for oscillations

Detection of Oscillations: PMU processing


Voltage Frequ 0.09 Hz 29.82 % 0.17 Hz 6.45 % 0.33 Hz 4.22 % 0.4 Hz 5.76 % 0.51 Hz 6.59 % 0.56 Hz 8.66 % 0.67 Hz 3.08 % 0.84 Hz 5.28 % 1.07 Hz 1.36 % 1.36 Hz 0.44 %

- Front end application continiously processing PMU data
 - Detection of oscillations
 - Characterization (Frequency, Damping, Mode shape)
 - Alarming and Alerting
- Results are updated every 5 seconds
- Reliable detection of oscillation with magnitude larger than white noise and frequency from 0.05Hz up to 4-7Hz.

High confidence level that all potentially dangerous oscillations within measurement frequency range are detected

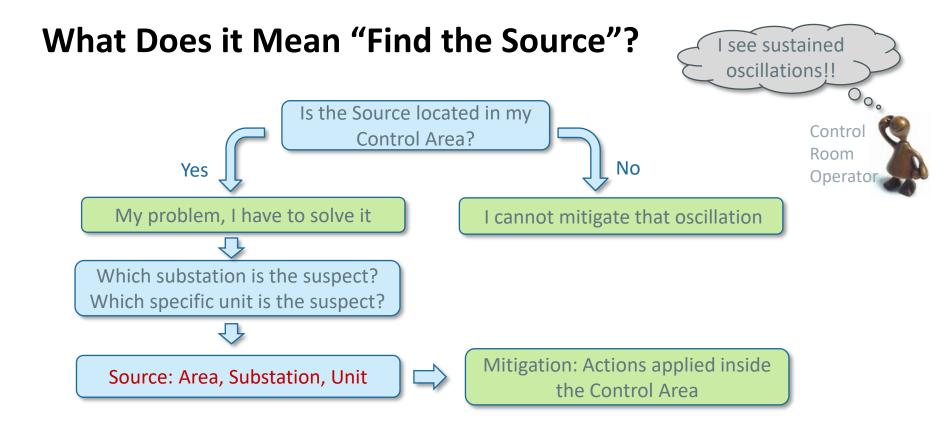
Observed Oscillations: Statistics since 2013, >1200 events

Property	Description
Frequency	Typical range: 0.05 1.5 Hz; Some instances of 0.004 and 8 Hz
Damping	0 20 %
Magnitude	Up to 150 MW, peak-to-peak Majority of instances <10MW
Observability	Local and Wide-spread
Duration	From few seconds to hours

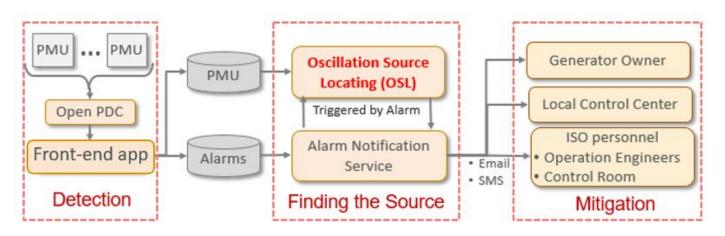
- Natural oscillations
 - Always well damped so far
- Forced Oscillations (FO)
 - Almost 100% of observed sustained oscillations are FO originating from synchronous generators
- IBR-based oscillations
 - Practically not detected yet at 10-13% generation from renewables
 - 1-2 MW sustained oscillation with period 3-5 min observed in area with multiple wind farms

So far, FO is the major thread to ISO-NE power system

FO is the Thread to Power System


- Potential instability and uncontrolled cascading outages
- Undesirable mechanical vibration in system components.
 - Example: 2009 Disaster at 6400 MW Hydro Power Plant*
- Mitigation is necessary for reliable operation of bulk power system and the key step is finding the Source of FO

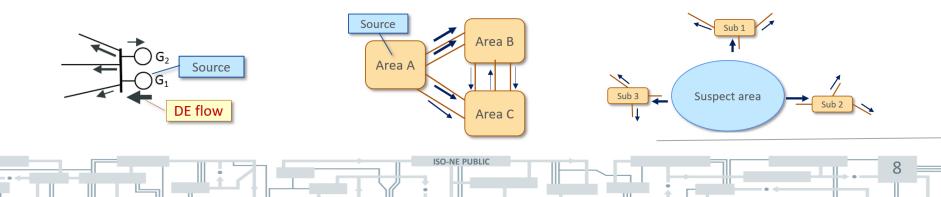
* https://www.powermag.com/investigating-thesayano-shushenskaya-hydro-power-plantdisaster/


Source of FO = "Bad actor"

"Find the Source" means providing actionable information to the Operator

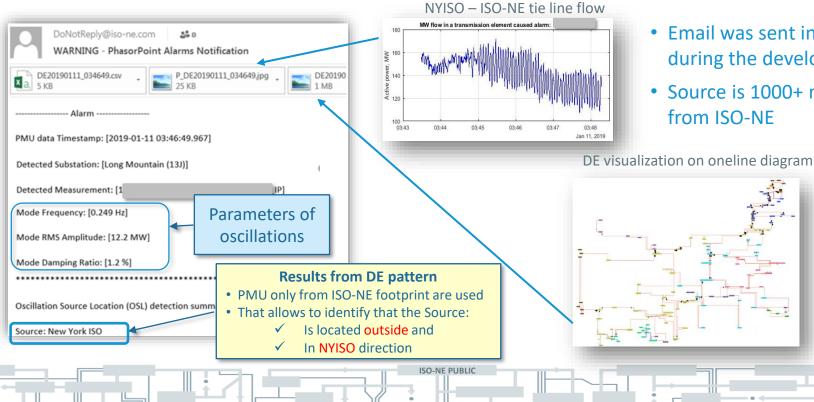
On-line Oscillation Management

- Objective
 - Detect significant oscillatory events and generate Alarms/Alerts.
 - Estimate the Source and deliver results to the designated personnel.



Fully automated 24/7 process, operational since September 2017

Oscillation Source Locating (OSL) Is the Key


- OSL calculates the flow of Dissipating Energy (*DE*) in any branch monitored by PMU
- Similar to regular MW, *DE* flows from Source to Sink
- Use cases of *DE* pattern:

1. PMU at the Point Of Interconnection allows to trace specific power plant or generator 2. PMU in tie-lines between control areas allow to identify which area contains the source 3. Even limited number of PMUs allows greatly localize the suspect area

Example: January 11, 2019 Event

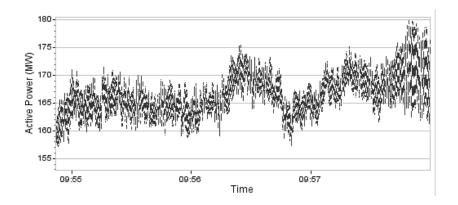
• Near-resonance conditions with inter-area mode around 0.25 Hz have caused the propagation of oscillation across the entire Eastern Interconnection

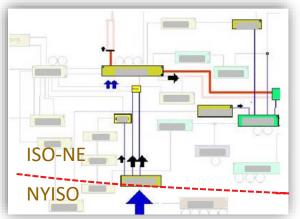
- Email was sent in real-time, during the developing event
- Source is 1000+ miles away from ISO-NE

Dissipating Energy Pattern Recognition (DR-PR)

- A human makes the source identification by looking at DE pattern visualized on oneline diagram.
- A useful feature is an automatic Source identification based on DE pattern

DR-PR greatly increases selectivity of Source identification for non-observable by PMU areas

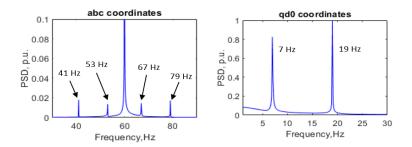

10


DE-PR Example: 7/2/2023: 0.2Hz oscillation caused by excitation system

DE-PR Example: Tracing the source outside of ISO-NE

 March 2024: multiple instances of ~1.2Hz oscillations originating outside of ISO-NE footprint


~~~ DE pattern recognition results CDEF method: Source: Area=NYPP (confidence=100%); localized within substations:


#### DR-PR allows to trace the source within non-observed by PMU area

#### **Statistics of Performance**

- Since 2017, automatically processed 1200+ oscillatory Alerts and Alarms.
- Correctly identified the source (generator and area) for all instances of oscillations with known sources inside and outside of ISO-NE.
- Satisfies today's operational needs for online detection of oscillations and efficient mitigation
  - The process works in the background and automatically provides key analytical information for operations when it is needed without the need for human to monitor raw PMU data

#### **Future Needs: Challenges Related to IBRs**

- Emergence of sub- and super-synchronous oscillations (SSO) with frequencies > 2-4Hz
- Existing source locating methods could be insufficient
  - Strong control interaction could be challenging



• Lack of high-speed synchronized measurements to track SSO

**ISO-NE PUBLIC** 

Existing PMUs with 30 samples/s rate are good for < 4-8 Hz</li>

#### Which IBR is "bad actor"?

- Need to find specific IBR negatively contributing to the damping of SSO in simulation environment and in actual operation
  - The main focus on natural oscillations, but FO will still exist

| Type of oscillation                        | The Source is            | Mitigation                                         |
|--------------------------------------------|--------------------------|----------------------------------------------------|
| Forced                                     | "Bad actor"              | Remove "bad actor"                                 |
| Natural without strong control interaction | "Bad actor"              | Modify " bad actor" parameters or remove it        |
| Natural with strong control interaction    | Within interacting units | Is the most contributing unit best for mitigation? |

**ISO-NE PUBLIC** 

#### More research is needed

#### **Control interaction: "Bad actor" and Efficient Mitigation**

- G2 contains periodic injection of energy into the Excitation (Actual Source of FO) and AVR of G1 produces negative damping as a reaction to oscillation (Larger Contributor)
  - G1 is deemed as the Source (Source of DE = Negative contributor to damping)
- Mitigation
  - Step 1: Reduce AVR gain at G1  $\rightarrow$  Now, G2 is identified as the Source
  - Step 2: eliminate the Source



"Largest contributor to negative damping" = "Best for mitigation" ??

ISO-NE PUBLIC

16

## Questions?

**ISO-NE PUBLIC** 

Slava Maslennikov, Ph.D. smaslennikov@iso-ne.com