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e Multiyear research project

e Explored the rapidly increasing role of
energy storage in the electrical grid
through 2050

e Supported by the U.S. Department of
Energy’s Office of Strategic Analysis
and Energy Storage Grand Challenge
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Eight Key Learnings

What to Know for the Coming Decades



Key Learning 1: Storage is poised for rapid growth.

e 100-650 GW (600 to 3000+ GWh) in 2050, or 5X today’s capacity
e Driven by storage costs, natural gas prices, renewable energy cost
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Key Learning 2: Recent storage are projected to

continue, with continuing to lead the
market share for some time.
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Key Learning #3: The ability of storage to provide

is a primary driver for cost-effective deployment
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Key Learning 4: Storage is not the only
but its declining costs have changed when it is

deployed vs. other options.

The Flexibility Supply Curve

Option costs are system-dependent and evolving over time.
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Key Learning 5:

Storage and PV complement each other.
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Key Learning 6: Cost
reductions and
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Key Learning #8:
technologies become especially

important for YAEE

@

o

o
'

. 100% decarbonization scenarios

=

o

=]
f

*  94% of national demand is met by VRE plus

Curtailment (GW)

n

[=]

=1
L

hydropower and geothermal

* 6% of demand is met by renewably-fueled

Jan 01 Apr 01 Juiot Octo1 thermal resources such as combustion turbines

burning hydrogen and biofuels.

2001

*  Thermal resources used during low wind and

lower solar periods.

100

Generation from Thermal Resources (GW)

I I ‘ NREL | 13
Jan 01 Apr 01 Jul01 Oct 01



_ S £
-\“‘ " : B - -’
1

Learn more about the Storage Futures Study

P
e’ e
e @

.

k \ .‘\‘.

=

NREL/PR-7A40-82370
Nate.Blair@nrel.gov
www.nrel.gov/analysis/storage-futures

i ;‘ ~H i 7
T e
: o 2
1y, -

K4

_ .3

B

PSRN
.



mailto:Nate.Blair@nrel.gov

Important Caveats

Factors that Could Impact the Future of Energy Storage



Important Caveats

e Storage growth and compensation
(both energy and capacity)

— How do markets appropriately value and
compensate storage
* Technology evolution

— Significant R&D efforts could improve other storage
technologies, potentially competing with lithium-ion
batteries
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Important Caveats

Role of flexible loads

— Need better characterization of demand response,
flexible load contribution potential, and cost

Value of distributed storage

— Emerging value streams and bi-directional EV's
* Evolving storage duration and
seasonal storage

— Multiplied uncertainty as renewable fuels likely
shared across sectors (industrial sector)

— Could long-duration tech displace diurnal storage?
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