Grid-Forming Inverter Applications for Improved Reliability and Power Quality in Al Data Centers

Sam Maleki, Director of T&D consulting RMS Energy

Introduction

Growth of Al

Increased reliance on data centers to host AI and internet-based technologies.

Power Quality

Data centers can create power quality issues, such as voltage sag and flicker.

Grid-forming inverters offer a solution for stability and reliability improvements.

Uninterrupted Power: A Data Center Necessity

*: Annual potential offline time of up to

Power Quality Challenges in Data Centers

High Energy Consumption

Voltage sags, harmonic distortion, and transients are common.

Sensitive Equipment

Minor fluctuations can cause data loss and equipment malfunction.

Financial Impact

Minor fluctuations can cause data loss and equipment malfunction.

Grid Forming Inverters

Data Center Load	Co-Location with GFM
 Unable to support a grid during faults or blackouts. 	 1. Voltage & frequency control 2. Works in grid & islanded mode
 Can contribute to system instability in high renewable penetration scenarios. 	 3. Supports black start (grid restoration) 4. Provides system inertia & stability

Study System Architecture (IEEE 9-Bus System)

Data Center Load

GFM-BESS Control System

Voltage Sag Mitigation with GFM (PSCAD Simulation)

Study System Details

- ✓ 500 MW AI Data Center
- ✓ 200 MW Droop-Based BESS-GFM
- ✓ PSCAD Simulation on Modified IEEE 9-Bus System

Scenarios Analyzed

✓ Voltage Sag Mitigation with GFM✓ Flicker Mitigation with GFM

Voltage Profile and Data Center Current During Fault (PSCAD Simulation)

Scenario Overview:

- Investigates the impact of fault event on the system
 with and without BESS-GFM.
- ✓ A single line-to-ground fault applied at t = 4 s, cleared after 6 cycles.

Voltage Profile at POI:

Purple dashed line (without BESS-GFM)

Voltage at the POI when the fault occurs, and the data center does not trip.

Green line (without BESS-GFM)

Voltage at the POI when the data center trips due to the fault.

Blue line (with BESS-GFM)

Voltage profile at the POI remains above 0.9 pu.

Voltage Profile and Data Center Current During Fault (PSCAD Simulation)

Scenario Overview:

✓ A single line-to-ground fault applied at t = 4 s, cleared after 6 cycles.

Frequency Profile at POI:

□ Blue line (without BESS-GFM)

Frequency at the POI increases due to data center load trip.

Purple line (with BESS-GFM)

Frequency at the POI remain in the acceptable range.

Al data center load profile

AI data centers cause voltage flicker due to nonlinear, fluctuating loads.

Co-location with conventional generator

Co-location with BESS-GFM

Without BESS-GFM: High variability causes significant flicker.

POI voltage without BESS-GFM

With BESS-GFM: Improved voltage stability, reduced flicker magnitude.

RMS ENERGY

Flicker Value at the POI

Without BESS-GFM: High variability causes significant flicker.

With BESS-GFM: Improved voltage stability, reduced flicker magnitude.

SCR	P_{st} level without BESS-GFM	P_{st} level with BESS-GFM
High	0.2061	0.0212
Low	0.947	0.278

Al data center load profile

Significant BESS lifetime reduction

Energy goes to BESS with high ramp rate

Hyper-scaler Loads must provide grid services

Generation unitsTransmission linesLoadsImage: Constraint of the state of the state

Generation units

Loads

Conclusion

✓ Key Takeaways

- Improved Power Quality & System Reliability
- Mitigates Voltage Sags & Flicker in Al-driven data centers
- Ensures Stable Voltage & Frequency during low-voltage events
- Prevents Load Disconnections & provides reactive support
- Loads must provide grid support services

Thank you for your attention!

