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WHAT IS AN OSCILLATION?

1. Is it an underdamped dynamic state? l.e, the condition in which a state tends towards
equilibrium with the amplitude gradually decreasing to zero but overshooting and
crossing the equilibrium position one or more times.

2. Is it a bifurcation in an unstable system? l.e, the system is trending towards collapse
while oscillating.

3. Is it a phase-lock in a controller over a limiter? l.e, is the inverter “bouncing” against
the ceiling.
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DYNAMIC SIMULATION

Time-Domain Simulation

\
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J. D. Lara, R. Henriquez-Auba, D. Ramasubramanian, S. Dhople, D. S. Callaway and S. Sanders, "Revisiting Power Systems Time-domain Simulation Methods and Models," in IEEE Transactions on Power Systems
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A TIME DOMAIN DYNAMIC MODEL

L0~ P, y0).m1), o) ==
dy(t)

o = G@(®),y(0),,1), y(to) =y’

e x(t) and y(t) are generally complex valued vectors of variables. Certain
formulations/implementations use real values.

e x(t) represents the variables for devices connected to grid.

e y(t) are the network variables, usually voltages and currents. In some
formulations active/reactive power can be used but it is less common.

Given the system model, a time domain simulation can be set up as follows:

Given an initial condition Z (), y(to) advance the solution in time ¢ from one point to
the next considering a discrete timeline. It requires a stepping algorithm that finds the
solution in time ¢, provided the values of the involved variables at {tg,%1,...,tn}.
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TRANSFORMATIONS

> Models employ reference frame transformations to achieve the necessary
representation of time variant signals using only their envelope.

» Commonly used transformations convert the time-variant model into a
time-invariant ones or at minimum increase the required time-step to achieve a

reliable result.

> The resulting transformed model is usually ”stiff” due to the multi-rate properties
of power systems. The model can still be difficult to analyze but the
transformation opens up possibilities.
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WHY USE TRANSFORMATIONS AND SIMPLIFICATIONS?

e Transformations and simplifications .
Implicit Scheme

are used to increase the minimum At
0
0

required in the simulation. Sr(x(t),y(t), z(t + At), y(t + At), )
e Commonly used transformations Sc(z(t),y(t), z(t + At), y(t + At), )

convert the time-variant model into a

stiff time-invariant model that requires Explicit Scheme

usage of implicit integration methods. x(t + At) = Ep(x(t),y(t),n, At)

e The "best” possible outcome is to y(t + At) = Eq(x(t), y(t), ¥, At)
further reduce the model and enable

use adaptive time stepping and
explicit solution methods.
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e Dynamic phasors in polyphase systems are not implemented uniquely as a result
the limitations described previously apply depending on how the technique is used.

e When implemented phase-by-phase the limitations presented in the previous slide

apply, i.e., bounded integral and bandwidth limitation

An alternative approach useful in simulations is to obtain the dynamic phasors for the

3-phase signal. This can be accomplished employing “space vectors”

5(t) = (54 ()" +5_(t)e )
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It is not possible to model directly an arbitrary three-phase signal with one phasor
quantity i.e., (s(¢)) # (s(t))+ + (s(t))—.

If the signal is balanced, i.e., s4(t) = sp(t) = sc(t) and 6y(t) = 04(t) — &F
0c(t) = 04(t) + %ﬂ the components 5 (¢) and 5_(t) reduce to the following expressions.

5.(t) = 3s(¢)e®®, 3_(t) =0.

implies that (s(t)) = (s(t))+.

The unreasonable effectiveness of balanced three-phase signals
This result showcases the effectiveness of averaging techniques in balanced systems:
The envelope of a balanced three-phase signal is completely determined by the

positive-frequency phasor.
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The original Park Transform is defined as:

Axis of Phase a

sao(t) = CTp(0()sanc(?)

Direction of
Rotation

where 0(t) is the angle between the
reference axes and the axes of rotation.

.,Il///l \

’ : : : Quadrature Axis 1’//
Park’s transform is valid and reversible for D ,
Axis of Phase b Axis of Phase ¢
any three-phase signal.
_ Fia. 1
The transform is useful for the purposes of

simulation complexity reduction only with >
careful selection of 6(t) 1g=— 3 {iasin 641, sin(6—120) +i. sin(6+120)}

2
la = 3 {1, cos 8 + 1, cos (0 — 120) 4+ 7, cos (6 + 120)}

Figure from R. H. Park, Two Reaction Theory of Synchronous Machines.
Generalized Method of Analysis - Part I, 1929.
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In simulation models, the calculation of the angle 6(t) is usually done by integrating

over frequency as follows:

o(t) = ft (04 Aw(r)) dr + 60 (1)

In a balanced system, the effectiveness of the transformation relies on choosing a
reference frame with a “system frequency” w = ws and Awg(t) = 0.

8dq0(t) = CTp(0(t))Sabc(t) = 5+ (1) (2)

The definition of the Park’'s Transform for balanced signals as a phasor transformation
Is used by several authors to develop time-invariant simulation models capable of
representing fast dynamics without a bandwidth limitation
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WHAT IS “SYSTEM
e |t is possible Cllgfﬁg‘lge er(eEnclce\I CY ? e In IBR simulation the relationship with

frame to reference transformation: w; is dictated by the model’'s controls.

e Frequency measurement employs an

Tp(6:1(t))Tp(02(t)) " idealized approach:

where Af(t) = 61(t) — 02(t) = d Vi bus(t)
_ & -1 Ygbus\Y)
7 (Awnr(r) — Dwn(r)) dr + AD. sl = g Y )

e In case of machine models
Aw(t) = Aw,(t) and there are no
assumptions required about wj.

e The implication is that with IBRs
simplifications in the network

dynamics can mischaracterize the

o In fact the "system frequency” is not effects of frequency deviations on the

a modeled quantity in a simulation controls.
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The transients associated with the network decay very rapidly and there is little
justification for modelling their effects in stability studies. [The network transients
cannot be neglected unless machine stator transients are also neglected; otherwise we
would have an inconsistent set of equations representing the various elements of the
| power system. Inclusion of the network transients increases the order of the overal]
system model considerably, and hence limits the size of the system that can be
simulated. In addition, a system representation with machine stator and network
transients contains high frequency transients. This requires small time steps for
numerical integration, resulting in an enormous increase in computational costs. Also,

Kundur, Power System Stability and Control page 170

What are the implications of network dynamics elimination in models with IBRs?
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SYSTEMATIC CHOICE OF SIMPLIFICATIONS

Singular Perturbation Theory (SPT) provides the formal underpinnings
for model order reduction and dynamic representation simplifications

Simplifications are commonly based on practical knowledge, but these have been
formalized in terms of time-scale separation arguments derived from SPT:

ys = Gs(xz,y,v)
Eyf = Gf(m,y,?,b,e)

zis - FS(may:n):
exy = Fr(x,y,m,¢),

By setting ¢ = 0, we can reduce the system by eliminating the fast dynamics. SPT is
used to guarantee that fast dynamics converge to a root of F¢(-) and G¢(-).

In practice, the theoretical underpinnings of SPT provide the justifications for
neglecting line dynamics and is used to show that modeling current flows over the
network via the admittance matrix Y is a reasonable approximation of the manifold.

How to model?

Electromechanical

| Lightning propagation |
phenomena

| Switching surges |

[1nverter based controls| T

Stator transients and phenomena
subsynchronous resonance

| Rotor angle dynamics

Governor and load
frequency control

| Voltage control |

| Boiler dynamics |

Wave Electromagnetic
phenomena phenomena
107 10°  10° 107! 10t 10° 10°

Time (seconds)

Figure adapted from N. Hatziargyriou et al., Task force on stability
definitions and characterization of dynamic behavior in systems with high
penetration of power electronic interfaced technologies, 2020.
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A GENERIC GRID FORMING INVERTER CONTROL
ST
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DEEPER DIVE INTO GFM CONTROLS

LCL Fllter —|— Transformer TX Llne model

Q|
3

Inner
Control PWM <1
Loop

L d ot Employlng Modulus Optimum Criteria (i.e., pole cancelatlon in the open-loop transfer
kpokiy @ =—¢+ ki (iey — J5v,) function
d
k cki_c -7 = _¢+ki_c1( ref_]l iev) k; 1 1
p L f HC(S):(kchri) 14 5
S 5— f
Qf dticnv = [(€cnv — Vo) — (17 + Jlyws) teno] 2 "t <1 t 8)
1 l¢f [
I d p L — koo kol & Hsw ~ 2~ 1x1073
Qudt " (vo = v1") = (ru + jwsle) zo] e i fsw D 8%
C_fiv = [(Genv — o) — jwsC o] Employing symmetrical optimum (SO) criterion (i.e. maximum phase margin at the
Oy dt ° e e ¥ %o crossover frequency
[ d / )
—— — vy] — o) K 1 1
Q dtze [vl ’v2] (T +Jw )” H’U(S) = kpv + - 1 C
c d s 1+ fs—ws Q—J;s
. d = kpok,, 5 % (2 +1)z 7 ~ 1x10
=~ ;U2 = [’l@ - 12] - (g +]CUSC)’02 CfJsw b (4X sw
Qy dt

S. D'Arco, J. A. Suul and O. B. Fosso, "Automatic Tuning of Cascaded Controllers for Power Converters Using Eigenvalue
Parametric Sensitivities," in IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1743-1753, March-April 2015,
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NEW DYNAMICS WITH THE ADDITION OF GFM
INVERTERS

® Original 14-bus eigenvalues

(a) “Fast” dynamics (b) “Slow" dynamics

*  Gens & Inverter: 14-bus eigenvalues

X x 10f %
-2500 [ RLC Filter AVR Voltage rn
Eigenvalues Measurement Virtual Speed 5}  Eigenvalues: AVR states and
-5000 F Eigenvalues Eigenvalue inverter voltage controller
_ } Voo Y ,
:g’ 0F ® = X X :E" o - « B om ee xo m ele x i w
—-2500 PLL
Eigenvalues -5F Eigenvalues: Generator
damping flux linkages states
—5000 f- and inverter current controller a:
x X, | . j -10p . . . . . 2
-2600 —-2000 -1400 -800 -200 —60 50 40 =30 -20 -10 0
Re()) Re(A)

R. Henriquez-Auba, J. D. Lara, D. S. Callaway and C. Barrows, "Transient Simulations With a Large Penetration of Converter-Interfaced Generation: Scientific Computing Challenges And Opportunities," in IEEE Electrification
Magazine, vol. 9, no. 2, pp. 72-82, June 2021, doi: 10.1109/MELE.2021.3070939.
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THE EFFECTS OF ADDING ELECTROMAGNETICS INTO
THE MODEL
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J. D. Lara, R. Henriquez-Auba, D. Ramasubramanian, S. Dhople, D. S. Callaway and S. Sanders, "Revisiting Power Systems Time-domain Simulation Methods and Models," in IEEE Transactions
on Power Systems, doi: 10.1109/TPWRS.2023.3303291.
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SPEEDING UP ANALYSIS ON BALANCED SYSTEMS

MODELS USED IN 144-Bus EMT VALIDATION
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Gens Machine Excitation = Governor PSS
20 SauerPaiMachine SEXS TGOV None
IBR Outer Inner Converter  Filter  Freq. Est.
Active Droop Voltage Average LCL
10 Reactive Droop Control Converter  Filter None 1176 states
14 Active PI Current Average LCL Kaura
Reactive PI Control Converter  Filter PLL
TABLE IV

EMT SIMULATION ERROR ANALYSIS

Line Trip
Maximum Active Power RMSE [pu] 4.45 x 1076
Maximum Reactive Power RMSE [pu] | 6.85 x 10~6
Maximum Voltage RMSE [pu] 3.03 x 10—6
Maximum Bus Frequency RMSE [pu] 1.35 x 107
Average Active Power RMSE [pu] 1.89 x 10~6
Average Reactive Power RMSE [pu] 2.24 x 1076
Average Voltage RMSE [pu] 1.03 x 10~
Average Bus Frequency RMSE [pu] 1.16 x 10~7

DqO0-EMT models can obtain exact same results as a waveform EMT with significantly slower
compute times. In a single core same hardware, a waveform simulation takes ~24 hrs while a

dqO0 can find equivalent solutions in ~100 seconds.

Lara, J. D., Henriquez-Auba, R., Bossart, M., Callaway, D. S., & Barrows, C. (2023). PowerSimulationsDynamics. jl--An Open Source Modeling Package for Modern Power Systems with Inverter-Based Resources. arXiv preprint

arXiv:2308.02921.
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UNSTABLE CONDITIONS CAN APPEAR AT ANY
M BRIV paRi€ipdioh Grid forming participation
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U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway and G. Hug, "Understanding Small-Signal Stability of Low-Inertia Systems," in IEEE Transactions on Power
Systems, vol. 36, no. 5, pp. 3997-4017, Sept. 2021, doi: 10.1109/TPWRS.2021.3061434.
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ASSESSING THE EFFECTS OF LINE EMT
DYNAMICS IN SYSTEM STABILITY AND
S Q Ll Narics connot P
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» The fundamentals of the Jacobian will determine
how small the timesteps need to be for accurate
representation of the dynamics.
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Active power droop k, [p.u.]

Small signal stability regions for
active/reactive droop on GFM.

Henriquez-Auba, R., Lara, J. D., Roberts, C., & Callaway, D. S. (2020, October). Grid forming inverter small signal stability: Examining role of line and voltage dynamics. In IECON 2020 The 46th Annual Conference of the IEEE
Industrial Electronics Society (pp. 4063-4068). IEEE.
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WHERE ARE ALL THESE INTERACTIONS COMING FROM?

> There is no clear-cut explanation yet of

where these interactions come from. - - — -
> Intuitively it is possible to explain the S N -“““_- _

changes in system dynamics by the fact ﬂ; T et

that inverters “break” the chain of

energy conversion and their controls TR

essentially manipulate electromagnetics
directly. R o | ] N

Semeler end

—— Heceiver emi

> Recent results based on
“electromagnetic momentum” provide
a reasonable explanation for this

Frequency [Hz|
&

Length = 100 miles

phenomena. wons e :

F 4
-1 -2 5 2 -1.5 -1 15 L]
-

& &
Time [s] WA} -

Sajadi, Amirhossein, and Bri-Mathias Hodge. "Plane Wave Dynamic Model of Electric Power Networks with High Shares of Inverter-Based
Resources." arXiv preprint arXiv:2401.16703(2024).
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CONSTANT POWER LOADS IN A SYSTEM WITH GFM
lNo\/d EB)];E)RJ%VS a significant role in
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Henriquez-Auba, R., Lara, J. D. & Callaway, D. S. (2024, February). Small-Signal Stability Impacts of Load and Network Dynamics on Grid-Forming Inverters. In IEEE Innovative Smart Grid Technologies North America 2024
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CURRENT CONTROL LIMITS DESIGN

[ref !
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* Key difference: instantaneous changes
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PERFORMANCE GFM CONTROL WITH LIMITS
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CONCLUSIONS

> There is a large gap in the understanding of the underlying dynamics of interconnected
power systems with large shares of inverter models. ”"Probably” some of the commonly
used practices in the industry are not the best examination tools.

> The interactions between EMT dynamics, constant power loads and current limiters
needs more study and relying on waveform EMT to perform these studies at scale is
impractical.

> Analysis practices need to evolve to provide engineers with understanding about the
nature of the oscillation.
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