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Main Reliability Challenges in Evolving Grid:

Importance of Grid Strength

A power system with low system strength are expected to exhibit the following behavior:

Undamped voltage and power oscillations.

Degradation in IBRs fault ride-through capabilities.

e Protection system malfunctioning due to reduced levels of short circuit current.
e Longer voltage recovery after voltage faults and disturbances.

e Larger transient voltage steps caused by switching capacitor or inductor banks.
e Dynamic voltage control stability issues.

e Increased levels of harmonic distortion in the grid.

e Deeper voltage dips and higher over-voltages during transients / More severe transient
characteristics of the system.

e Black start, islanded operation, issue of inrush currents

Is grid forming by IBRs going to help? If so, how much do we need it?
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GRM Wind Project

e DOE WETO funded 3-year
NREL/GE project

Develop, deploy and
demonstrate GFM
controls in 2.5 MW Type
3 wind turbine generator

Drivetrain installed on

NREL 5 MW 3

dynamometer and tests rower
using 7 MVA MV gird

simulator (CGl)




NREL Test Platform

28 MVA
Grid cel# 13.2 kV test bus
7 MVA 7 MVA GE 2.5 MW GFM DFIG
1 32 kV @ Synch switch
E El: 1—e¢ El-oa f 5MW
bc ¢ ' L dynamometer

RC E
Fliter :

PHIL ;

e Testing under controlled grid conditions:
e Grid strength emulated by CGI PHIL
* Balanced and unbalanced LVRT and HVRT
* Frequency variations, phase jumps
* Islanded operation
 RTDS and PSCAD model validation NREL | 4



LVRT and 30° phase-jump
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Type 3 GFM WTG Impedance Characteristic:

Model and Test Comparison
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Type 3 GFM testing configurations

Islanded operation
. 1MW / 1MW
Grid connected

| GE 2.9 MW GFM DFIG
ﬁ T ¥ L 2 ﬁ

3 MVA load bank

GE 2.9 MW GFM DFIG

@HE-—/

Multi-technology island

1MW / 1MW
GFM BESS
7 MVA CGI I

O——@—0—
1 | emulator

SG/SC |
2MW /1 MVAR
M 3 MVA load bank
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Black start with GFM BESS
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Load Wind

GFM BESS starts with 500kW loads and
voltage ramps

Spike up to 2MVA observed on BESS
during GFM Type 3 first
synchronization — SMA has overcurrent
capabilities to ride through it

Closing of second breaker causes
initially large reactive power injection
that needs to be handled by SMA
After that GFM Type 3 controls
reactive power much better and active
power is ramped up
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Response of GFM BESS + GFM Type 3
voltage steps
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GFM

PSCAD model of offshore WPP

15 MW WTG
M
Synchronous #1902
condenser g
GFM
\ e 230 kv 230 kv 66 kV
== =} = g
Programmable (=) #2321 — %_'
SCR — ﬁ #2 *F#: GFM
sln1
230 kY

#2001
#21H#1 iﬁi
Offsh 66 kV collector
Undersea cable snore system

substation g £23041
1

@ [ohm]  Eshunt

POI GFM BESS by « 15 MW Type 4 GFM WTGs
. / * GFM with current limiting control
co::,':,tensation * 50 km 230 kV submarine transmission (3-core XLPE cable with armor)

* 66 kV collector system

* Shunt compensation at receiving end

* POI SCR range: 2-50

* Enhancing systems modeled at POI: GFM BSS, synchronous condenser
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GFM WPP LVRT
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NREL's Impedance Scan Tool

* Evaluates Impact of IBRs on System Stability, Control Interactions, and
Oscillations

* Works with all IBR models — black-box user-defined, real code, and generic
EMT models

' [ EMT Simulation or EMT-TS Simulation Model of Grid with High Levels of IBRs J
3 =
PV Plant : Storage

1 2 ¢zt T
\ Vol Tn" g X -
s S t R o
et

Wind Plant

Flexible and Scalable Impedance
Scan Tool for Stability Analysis
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14-bus System with 6 IBRs (4 GFM and 2 GFL)
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* In this example all IBRs oscillate at 3.2
Hz following a fault event

— What is the role of GFL vs GFM
IBRs in system-wide 3.2 Hz
oscillations?

— How to define the minimum
capacity of GFM resources
required in a 100% IBR grid to
ensure stable operation without
oscillations?
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Capacity of GFM IBRs Required for Stability

Improved GFM Control at IBR3 (higher

Original Design of GFM BR3 voltage control bandwidth)
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* NREL's impedance scan tool shows not only how any selected IBR
impacts dynamic stability of the system, but it also shows the impact
of control modes (e.g., GFM vs GFL) and control parameters of IBRs
and guides the control design process to mitigate stability problems.
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Impedance Scan of a 2 MW Inverter
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Type 5 wind turbine with Torque Limiter
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Synchronous Wind Concept

A Comparison of Advantages fore Specific Turbine Types

« WETO-funded project
* Evaluate system level
benefits of Type-5

wind

Measured Fault Response of Type 5 Wind Power Plant
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Grid Integration Challenge

Type 3 | Tpe 4

Type 5

Weak grid operation Yes, with controls Yes, no controls needed, tends to
make grid stronger
Operation at sites with low shori-circuit
ratio (SCR) yet to be demonstrated
Short circuit current contribution Limited Mo, unless significantly High, no controls needed
oversized
Contribution to system inertia Inertiaike Inertiadike response using | Yes, no controls or curtailment needed
response using controls, with curtailment (for example, a two-pole generator would
controls, no give fourtimes real inertia compared to
curtailment a four-pole generator)

Fast frequency response

‘Yes, fast response with special controls, curtallment, and/or transient uprating

Primary frequency response

‘Yes, fast response with special controls and curtailment

Participation in frequency regulation

Yes, curtailment needed

Yes, curtailment needed

Independent control of active and
reactive power

‘Yes, with controls

Yes, with controllable automatic voltage
regulator (AVR)

Transient performance and ride-
through

Yes, with special controls

Yes, same as conventional synchronous
generator with AVR

Violtage control Yes, with special controls ‘Yes, same as conventional synchronous
Eenerator with AVR
GFM operation Yes, with controls ‘Yes, no controls (default operation mode)
Black start and islanded operation | Yes, with controls and energy storage ‘Yes, no controls
Medium-voltage operation ‘Yes, with stepup transformer; transformerless Yes, up to 20 k¥ with no transformer
might be possible in the future
Protection impacts May require adjustment to protection to Mo change in the existing protection

accommodate lower shortcircuit cument
than synchronous generation
(Type 3 has more SCC capability than Type 4)

framework

‘Wind-free voltage support

‘Yes, with special controls (voltage control only,
no inertia)

“es, with clutch to disconnect generator
from gearbox (Synchronous condenser
mode, provides voltage control and
inertia, enhances grid strength)

Brushless operation Brushes needed | Yes Yes
Generator Special design | Special design, dependence on| Mass produced, global maintenance
rareearth minerals for perma- | network and workforce exists, no depen-
nent magnet generators dence on rareearth minerals
Cybersecurity Yes Yes Fewer controls means fewer targets for
external attacks a

Grid-Forming Wind: Getting ready for prime time, with or without inverters

V Gevorgian, S Shah, W Yan, G Henderson - IEEE Electrification Magazine, 2022
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https://scholar.google.com/scholar?oi=bibs&cluster=17236740158538910154&btnI=1&hl=en

Summary and Future Plans

* GFM technology for IBRs is gaining traction in the energy industry as the grid continues to
evolve with increasing shares of IBRs and retiring conventional generators. GFM control
by IBRs can replace some of the services that synchronous generators have been
providing.

* Mainstream wind power based on Type-3 and Type-4 electric topologies, as an IBR
technology, is fully capable of providing GFM services

* GFM resources are fast acting

— In most cases they improve small-signal stability, avoid control interactions and oscillations, and enable stable
operation of grids with high as well as low penetration of IBRs

— They bring additional value for frequency and voltage control for high IBR grids — GFM control does not
significantly add value to frequency/voltage control for low IBR grids.

* Value of GFM increases with penetration of IBRs — industry needs to take long-term view
to avoid substantial cost in future of not promoting GFM control for IBRs

 Large-scale field demonstration of GFM operation is needed
 Standardization
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