

ESIG - 2019 Fall Technical Workshop October 28-30, Charlotte

Peter Jørgensen, VP Energinet Associated Activities, Denmark

ENERGINET

Transmission System Operator for electricity and gas in Denmark

- Day-to-day and long-term responsibility for transmission systems in Denmark
- Development of energy markets in Denmark and the EU
- Own, operate and develop the transmissions systems
- Contribute with long-term planning and analysis of coherent energy systems
- State-owned and non-profit

GREEN TRANSITION

STATUS:

63% green electricity 34% green energy

2030 TARGET:

100% green electricity
55% green energy

70% reduction in emission of GHG compared to 1990

2050 TARGET:

100% green energy

INTEGRATION OF WIND POWER IMPLIES MORE THAN GRID CONNECTION

ENTSO-E Ten Year Network Development Plan 2018

Installed offshore wind power in Europe:

Today: 20,4 GW

ENTSO-E scenarios for the NSOG region:

• 2030: 40 - 60 GW

• 2050: 85 - 125 GW

- Northern Seas Offshore Grid Infrastructure in TYNDP 2018:
 - 20 individual projects into common scheme
 - Investment costs €14-27 bn
 - Socio-economic benefits €1.3-2.4 bn/year
 - Facilitates extra RES generation 14-19 TWh/year

ENTSO-E: European Network Transmission System Operators - Electricity

European Offshore Wind Farms Map

GRID CONNECTION MODELS

Developer- and TSO-models in Europe

Developer-model: Developer TSO

TSO-model: TSO TSO

GRID CONNECTION MODELS

European Offshore Wind Farms Map

Denmark:

• TSO-model including IEA and seabed survey for wind farm has served very well until now

© 2019 Mapbox © OpenStreetMap

Figure 11. Offshore HVAC transmission system CAPEX comparison.

Source: Navigant analysis based on DNV-GL, 2019, with input from RTE

Note: Trend line only represents UK connection systems

- O UK, Initial transfer value
- UK, Indicative transfer value
- UK, Final transfer value
- DK, Final value
- FR, Estimated value
- ▲ NL, Budget value

NAVIGANT

Connecting Offshore Wind Farms

A Comparison of Offshore Electricity Grid Development Models in Northwest Europe

Commissioned by

Réseau de Transport d'Électricité and TenneT TSO B.V.

July 2019

KRIEGERS FLAK COMBINED GRID SOLUTION

First combined grid connection and interconnection

• Wind farms:

Danish: 400 MW & 200 MW

• German: 48 MW & 288 MW

Grid connections

Danish: 45 km+26 km, 2x220 kV

German: 60 km + 60 km, 2x150 kV

Interconnection: 25 km, 2x150 kV, 400 MW

• Offshore platforms: AC-transformers

Onshore: HVDC back-to-back converter in DE

Available capacity allocated for trade

NORTH SEA WIND POWER HUB

- Regional perspective on grid connection and system integration of offshore wind in the North Sea
- Coordinated and coherent development
- "Hub and spoke" concept modular
- Based on existing technology
- Integration of flexible solutions and increased electricity consumption for instance PtX

Offshore windfarms

Hub

Combined grid connection and interconnections

Modular Hub

LANDING ZONES FOR MULTI GW OFFSHORE WIND POWER

ENABLER FOR LARGE SCALE HARVESTING OF HUGE OWP-POTENTIAL TO SUBSTITUTE FOSSIL FUELS

