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Project Background

* HydroNext Initiatives funded by the U.S. Department of
Energy (DOE) include development of innovative
technologies to advanced non-powered dams and
pumped storage hydro (PSH)

 Team: NREL (project lead), partnered with Absaroka
Energy Development, LLC (Montana based PSH project
developer), Grid Dynamics and GE Renewable Energy (PSH
pump/turbine equipment supplier) and Auburn University

e Study Goal: Assess the electricity-market- transforming
capabilities of flexible and fast-acting ternary-type
pumped-storage hydropower (T-PSH) and asynchronous
PSH (A-PSH) coupled with transmission monitoring and
dynamic control (TMDC)

o Two-year effort to model and quantify/qualify the

value and benefits



Project Focuses on 400 MW.PSH.Plant Development

e Although no T-PSH or A-PSH plants are in operation in the
United States, Absaroka Energy, LLC is currently developing
the 400-MW Gordon Butte Pumped Storage Hydro Project in
central Montana

* Gordon Butte will be the first advanced PSH facility to deploy
(GE Renewable Energy-supplied) non-conventional PSH

 The Gordon Butte development proposes three 133-MW
units, totaling 400-MW total capacity

* This plant is modeled off the Kops Il facility in Austria that was
commissioned in 2008
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Presentation Topics

* Ternary (T-PSH) and Asynchronous Pumped Storage Hydro (A-PSH)

o Overview and description of grid services compared to conventional
pumped storage hydro (C-PSH)

* DOE Project highlights and lessons learned to-date
o Price taker modeling comparisons of PSH for grid services
o PLEXOS modeling of T-PSH
o Dynamic modeling of T-PSH, A-PSH and C-PSH systems

* Considerations for Comparing PSH and Battery Systems

* Levelized cost of energy (LCOE) and capital and investment costs
included in the project but not presented here
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Ternary Pumped Storage Units

e Separate turbine and pump on a
single shaft with an electric machine

| Head water | l !

* Operation mode \\
o Turbine = PI —,ﬁ' ' —

o Motor/Generator 4
o Hydraulic short circuit L 5
— (Multi-staged pump) 4_ ! B §

Source: F. Spitzer and G. Penninger, Pumped Storage Power Plants—Different Solutions for Improved Ancillary Services through Rapid
Response to Power Needs, HydroVision 2008, July 2008. HydroVision, July 2008.
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Features of Ternary Pumped. Storage.Units

- Advantage compared to C-PSH

o The machine can move rapidly from the full pumping
mode to the full generating mode, vice versa
— Fast response
— Short transition time among different modes
o A better natural response to system disturbances
— High inertia
— Governor speed control in HSC mode(pumping)

- Disadvantage
o High capital cost
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Types of Pump Storage Power.Plants

Pump Storage Power Plants
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Source: Johann Hell, Vienna, High Flexible Hydro Power Generation Concepts for Future Grids . Hydro PSP concepts, PPT
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Evaluating Grid Services and Value Streams for Energy Storage
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Price-taker Model Captures.Some.Revenue Streams

 Well accounted for revenue streams:
o Energy and ancillary services in day-ahead market
— Ancillary services capture part of the value of flexibility
* Poorly accounted for revenue streams:

o Energy and ancillary services in real-time markets

— Can run real-time market, but real-time markets inherently
volatile and risky

* Not accounted for revenue streams:
o Capacity payments
o Monetized system cost savings

o Value of flexibility through flexibility market products
o Future value of inertia response?
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Price Taker Model Used to Better Understand Operations And

Net Revenues

* Production cost modeling embeds PSH within the broader power system,
and can quantify total system cost savings due to PSH.
— Production cost models minimize system costs
— These cost savings likely can’t be fully monetized

* Price-taker modeling assumes the broader power system does not change
with PSH, and can quantify PSH’s net revenues.

— Price-taker model maximizes net revenues

— Optimizes operations across different revenue streams

Key Inputs

e Energy and ancillary
service price time series
* Ternaryor
conventional PSH
parameters

Maximize
Objective
Function

\

/.
~——_

Maximize net revenues subject to:

* Generation and reserve provision
constraints

* Volume storage constraints

* Generation to pumping switching
times
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Key Unit-Level Outputs

Net revenues
Electricity generation,
ancillary service
provision, and pumping




Preliminary CA-ISO Results Provide Several Key Takeaways

Ternary PSH can earn more annual net revenues than
conventional PSH assuming historic market contexts

Large inter-annual variability in net revenues exists

Energy and ancillary service revenues both play an
important role in total net revenues

Capacity value dominates energy and ancillary service
net revenues

Future work could forecast 2024 NWPP prices

Modeling assumptions include

Optimize operations in day-ahead market in 2015, 2016, and 2017
Optimize electricity generation, regulation up, and regulation down provision
o Use CAISO prices for each

Restrict regulation up and down reserve provision to 10% of the total CAISO requirement
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Production Cost Modeling

 Methodology

o Use baseline Low Carbon Grid Study (LCGS) model, with
updated generation builds and retirements from TEPPC

2026
o Geographic decomposition
o Day ahead and real time (improved resolution)
o Adding Hydropower
e (Calculate production cost, pumping and generation,
renewable energy curtailment
o Lessons learned and modeling developments

o Limitations of the model and potential for further
improvements
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Scenario Analysis for 400 MW, Gordon Butte Plant

Scenarios

* Base case — gives a base set of results for how the system runs
without added pumped storage hydropower

* C-PSH —a conventional pumped-storage hydropower unit is
added to the base case, in Gordon Butte

 Ternary—a Ternary pumped-storage hydropower unit is
added to the base case, in Gordon Butte

C-PSH Ternary

, . Units 3 3
Switch times and
ramp rates would Maximum Capacity | 133 MW 133 MW
be added if a Minimum Stable | 0 MW 0 MW
higher resolution Level
ibl
was possible Pump Efficiency 80 % 80 %
| Pump-toad- £33vi 133 MW
] v
Minimum Pump 133 MW
Load




Preliminary Production Cost Modeling Observations

Analysis shows value of C-PSH and additional added value
of T-PSH in future NWPP scenario in terms of balancing
energy and meeting reserve provision

* As a result of the variable output pump

The variable output capability of Ternary gives it
opportunity to pump in more time periods than C-PSH and

hence creates a greater production cost saving to the
system

The insufficient look-ahead in real-time restricts the

planning capability of storage required to take benefit of
the variable renewable energy forecast errors in a 5-minute
resolution
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Dynamic Modelling Comparison.of. I-PSH.and A-PSH with C-PSH

Modeling of conventional pumped storage hydro unit
in PSLF
Modeling of ternary pumped storage hydro (T-PSH)
unit in PSLF
Modeling of AS-PSH in PSLFA-PSH(Type 4)
o Add frequency response controller
Simulation and test
o Validating the T-PSH model in 10-bus 3- generator
system
= Event test, Mode switch
Developing the Western Interconnection model with
different penetration levels of PV and wind
Testing the T-PSH Models for the Western
Interconnection and compare the performance of T-
PSH, C-PSH and AS-PSH (in progress)
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Dynamic Modeling of Ternary.Pumped Storage

* Develop a user-defined dynamic governor model for T-PSH in PSLF by using
EPCL language.

* Simulate three operation modes in one model and switch among different
modes seamlessly.

* Full dynamic Model=GENSAL+IEEET1+User-defined Model

Ternary-PSH configuration - S g‘ti Synchronous
< ;’; generator
e elton turbine
4 £y

e I tl — — —
: Tt qutch connected

= L
o e - *
Hydraulic Short Circuit Mode (HSC) woomm

Source: from GE renewable
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Dynamic Modeling of A-PSH

e A-PSH with full converter

o Simplified A-PSH model Grid
o With frequency support controller Transformer
(synthetic inertia and primary frequency r
controller) Converter
Capacitor T-PSH Simulation M
n -100%...+100%
Bus 15 Generator 28.9 MW GENSAL IEEET1 HYGOV ik
_____________________ \ a Pumpturbine
Bus 19 Generator 1276 MW [ | GEWTG EWTGFC EPCMOD | 1 [

Bus 20 Generator 2400MW GENROU EXAC1 GAST
Variable Speed
Meters IMETR VMETR FMETR Full Converter
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Mode Switch of T-PSH
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Impact of T-PSH on the Western. Interconnection

Existing Pumped Hydro Storage in

Five Pumped Storage Hydro in
P g Y WECC

WECC

~ 3
Victori

Unit Total

"o

P li attle
number  capacity S OiNE s WASHINGTON *
MONTANA
Castaic T- Gordon Butte Project
6 1500 MW | -894 MW poriess
PSH
Helms T- il IDAHO
3 1287 MW | -930 MW WYOMING
PSH
Hyatt T-PSH 6 714 MW | -469 MW J
San Luis T- ,o ALl ' (5}
8 424 MW -53 MW Saccamiris UTAH e
PSH o OLORADO
San Franc,
Big Creek T- s ! a‘
1 222 MW -207 MW CALIFORNIA Las Vegas
PSH &
Total 24 4147 MW | -2553 MW Los Aggf @A NEW MEXICO
SanDiego
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Comparison of T-PSH and C-PSH.in.the WECC

N-2 Contingency : Two Palo Verde generators trip (2756MW) at 10s.
e Case 1: T-PSH at HSC mode
* Case 2: C-PSH at pumping mode
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Impact of T-PSH on Frequency Response.in.the WECC
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Impact of T-PSH on Frequency Response.in,the WECC

Improvement of Frequency Nadir
70

Quantify the benefit of T-PSH in the WECC
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Future Comparisons of PSH and Battery.Storage Systems Needed

Battery Lifetime Analysis and Simulation Tool

BLAST BTMLGUI =J®
o

__LMMWANOM
Battery profiles 0

L 0
Load Rate Structure

BLAST-BTM Lite

i

Energy price
time-series

Degradation

Pumping and

generation
heuristics

Price-Taker Model
(with look-ahead)

Comparison between
Ternary and Batteries
with operation, system
cost savings and

renewable energy
curtailment, in real-
time too

Capital Cost Analysis
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|deas for Price-taker Model Comparison of PSH and Battery Storage

Key Inputs Key Outputs

Energy and Maximize Net revenues
ancillary service Objective
price time series Function Electricity
generation
Storage facility Maximize net revenues
parameters Subject to: Reserve provision
* Generation constraints Pumping

* Pumping constraints
* Reserve provision constraints
* Stored energy constraints

To improve storage operations in PLEXOS, run price-taker model on prices output by PLEXOS,
then use operations to guide storage operations in PLEXOS

Additional work needed to:
* Generate future price time series that reflect ongoing changes in electricity markets
* Add capability to arbitrage across day-ahead and real-time markets
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