

U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE

universal **i**nteroperability for grid-**f**orming **i**nverters

Introduction of WECC-Approved GFM Models —*REGFM_A1 and REGFM_B1*

Wei Du, Ph.D.

Solar Subsector Manager, Pacific Northwest National Laboratory (PNNL) Research Associate Professor, Washington State University (Joint Appointment)

Deepak Ramasubramanian, Ph.D.

Senior Technical Leader, Electric Power Research Institute (EPRI)

Oct. 22nd, 2024

• The standard library models, user-defined positive-sequence phasor models, and EMT models are all very important, and have different application scenarios

- Standard library models are very important for the interconnection-wide base case creation and many other planning studies
- **The FERC Order No. 901** "require the use of **approved industry generic library IBR models** that accurately reflect the behavior of IBRs during steady state, short-circuit, and dynamic conditions when developing planning, operations, and interconnection-wide models"
- Before we initiated this work, there was no standard library GFM models in commercial transient stability simulation tools

We need to develop **accurate, industry-approved standard library GFM models** for transmission planners to help advance the GFM technology toward wide adoption

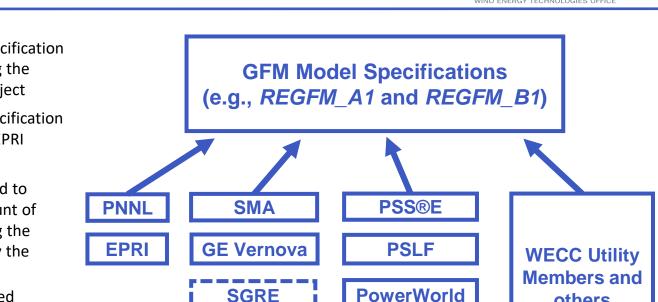
Why are Standard Library GFM models Important? **Mifi**

2

WECC-Approved Standard Library GFM Models

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE

- The WECC Modeling and Validation Subcommittee (MVS) recently approved two GFM models:
 REGFM_A1 (approved on 9/27/2023) and *REGFM_B1* (approved on 5/23/2024) proposed by UNIFI members
- These models represent two mainstream GFM controls used in industry: *droop control* and *virtual synchronous machine control*
- These two models become the first generation of WECC-approved GFM models, and have been integrated into the simulation tools used by transmission planners worldwide, including PSS/E (V36.1), PSLF (V23.2.8.2), PowerWorld (V23), and TSAT (V24.1)



WECC Announcements of REGFM_A1 and REGFM_B1 Model Approvals

REGFM_A1 Specification REGFM_B1 Specification

- The original REGFM A1 model specification was developed by PNNL leveraging the previous DOE CERTS Microgrid project
- The original REGFM B1 model specification was developed by PNNL, GE, and EPRI supported by UNIFI
- These specifications were proposed to WECC MVS, and a significant amount of time has been spent on addressing the questions and comments raised by the members
- The specifications have been revised multiple times to incorporate reasonable suggestions from additional OEMs, software vendors, and system planners

SGRE

Tesla

Inverter Research Software **System Planner** Manufacturer Institution Vendor

TSAT

SOLAR ENERGY

others

Acknowledgement

• I'd like to thank all the dedicated contributors for developing the WECC-approved standard library GFM models

REGFM_A1 Model Contributors

Name	Organization	
Wei Du	Pacific Northwest National Laboratory	
Robert H. Lasseter	University of Wisconsin-Madison	
Christian Hardt	SMA Solar Technology AG	
Song Wang	Portland General Electric	
Songzhe Zhu	GridBright, a Qualus Company	
Yuan Liu	Pacific Northwest National Laboratory	
Quan Nguyen	Pacific Northwest National Laboratory	
Jinho Kim	Pacific Northwest National Laboratory	
Hongtao Ma	North American Electric Reliability Corporation	
Pouyan Pourbeik	Power and Energy, Analysis, Consulting and Education (PEACE®) PLLC	
Deepak Ramasubramanian	Electric Power Research Institute	
Juan Sanchez	General Electric	
Jayapalan Senthil	Siemens PTI	
James Weber	PowerWorld	
Jeff Bloemink	PowerTech Labs	
Doug Tucker	Western Electricity Coordinating Council	
Sophie Xu	Pacific Gas and Electric	
Zhenyu Huang	Pacific Northwest National Laboratory	
Francis K. Tuffner	Pacific Northwest National Laboratory	
Renke Huang	Pacific Northwest National Laboratory	

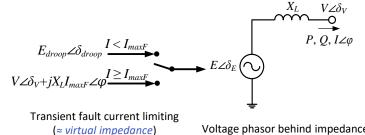
REGFM_B1 Model Contributors

Name	Organization	
Wei Du	Pacific Northwest National Laboratory	
Sebastian Achilles	General Electric	
Deepak Ramasubramanian	Electric Power Research Institute	
Philip Hart	General Electric	
Shruti Rao	General Electric	
Wenzong Wang	Electric Power Research Institute	
Quan Nguyen	Pacific Northwest National Laboratory	
Jinho Kim	Pacific Northwest National Laboratory	
Qian Zhang	Electric Power Research Institute	
Hanchao Liu	General Electric	
Pedro Arsuaga Santos	General Electric	
James Weber	PowerWorld	
Juan Sanchez	General Electric	
Mengxi Chen	General Electric	
Jayapalan Senthil	Siemens PTI	
Pouyan Pourbeik	Power and Energy, Analysis, Consulting and Education (PEACE®) PLLC	
Udoka Nwaneto	Pacific Northwest National Laboratory	
Jeff Bloemink	PowerTech Labs	
Song Wang	Portland General Electric	
Doug Tucker	Western Electricity Coordinating Council	
Songzhe Zhu	GridBright, a Qualus Company	

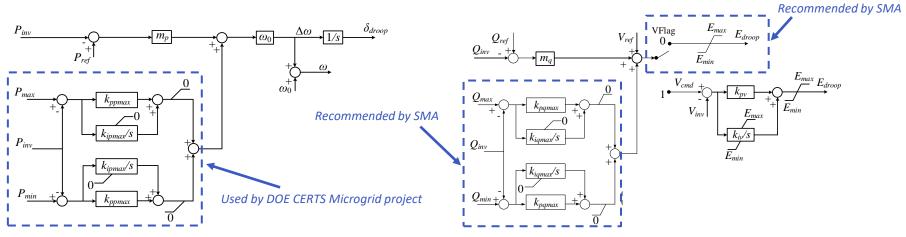
S OFFICE

5

SOLAR ENERGY


SOLAR ENERGY TECHNOLOGIES OFFICE U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE

Funded by:


Introduction of REGFM_A1 Model

Block Diagrams of REGFM_A1

- The REGFM A1 model includes
 - Voltage phasor behind impedance representation
 - *P-f* and *Q-V* droop controls
 - Steady state *P* and *Q* limiting
 - Transient fault current limiting (\approx virtual impedance)
- Most of control blocks came from the DOE CERTS Microgrid Project
- SMA suggested to add the Q limiting block, and the V_{flag} =0 option

Voltage phasor behind impedance

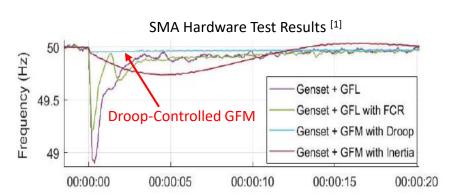
P-f droop and active power limiting

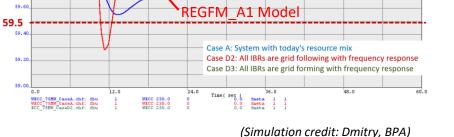
Q-V droop and reactive power limiting

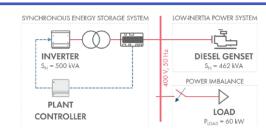
SOLAR ENERGY

TECHNOLOGIES OFFICE

REGFM_A1 Model Validation against SMA GFM Test


- REGFM_A1 simulation results match the SMA hardware testing results
 - Case study was performed on the micro-WECC system for frequency regulation
 - IBR penetration level: 73%, 10% headroom


73% penetration of GFMs in the micro-WECC system


60.0

59.8

 Both the simulation and hardware testing show that droop-controlled GFM can significantly improve the system frequency response

SMA Test System

8

SOLAR ENERGY

TECHNOLOGIES OFFICE

[1] A. Knobloch et al., "Synchronous energy storage system with inertia capabilities for angle, voltage and frequency stabilization in power grids," 11th Solar & Storage Power System Integration Workshop (SIW 2021), 2021, pp. 71-78

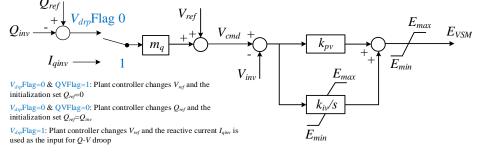
Applicability and Limitation of REGFM_A1

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy UND ENERGY TECHNOLOGIES OFFICE

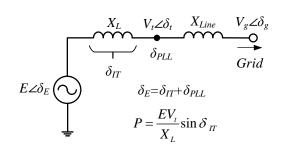
- The REGFM_A1 model can be used for many scenarios. However, it does not include advanced current limiting and fault ride-through (FRT) controls that are implemented by some OEMs
- This is because many OEMs consider those controls as proprietary technologies
- During a long-term fault (e.g., a 25-cycle fault), the REGFM_A1 may lose synchronism to the grid
 - OEMs' black-box models are recommended to study those long-term severe faults
- The UNIFI team is evaluating various candidate methods, and plan to include them in the next version (*e.g., REGFM_A2*)

Recommended	Not Recommended
Scenarios of Using	Scenarios of Using
REGFM_A1	REGFM_A1
 Frequency response Islanding and islanded operation trip of generators and lines typical faults with a normal clearing time Overload testing 	 long-term severe faults (e.g., a 25-cycle delayed clearing fault)

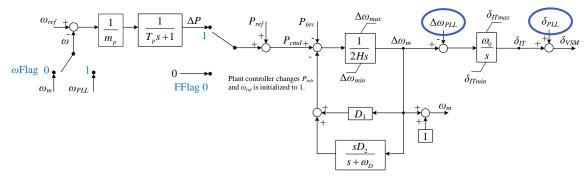
Funded by:


Introduction of REGFM_B1 Model

Introduction of REGFM_B1 Model

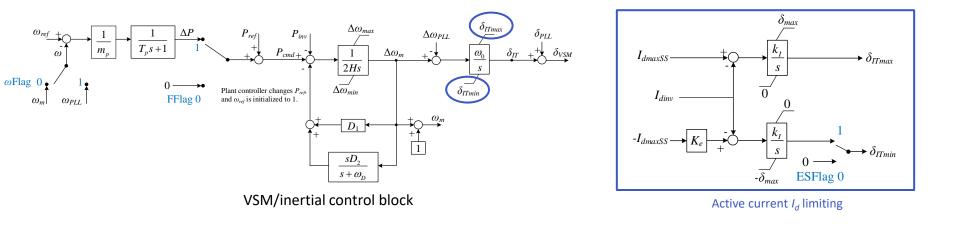


SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE


- The REGFM_B1 includes the voltage control block and the VSM/inertial control block
- A PLL is used to get the angle of the terminal voltage, and the VSM/inertial block controls the angle difference δ_{IT}
- The use of PLL is different from its use in grid-following inverters (GFLs)
- The PLL can be considered as not existent during normal operation (when $\delta_{\rm ITmin} < \delta_{\rm IT} < \delta_{\rm ITmax}$)

Voltage control block

Voltage phasor behind impedance


VSM/inertial control block

The active current I_{dinv} is limited by regulating $\delta_{_{ITmax}}$ and $\delta_{_{ITmin}}$

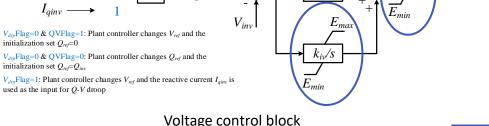
Steady State Current Limiting in REGFM_B1

٠

٠

GE provided an advanced current limiting solution, including the steady state *active and reactive current limiting* controls

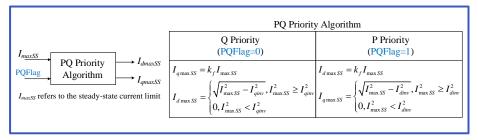
LOGIES OFFICE


WIND ENERGY TECHNOLOGIES

12

{drn}Flag 0 $(I{amax}X_{I})^{2} + (I_{dinv}X_{I})^{2}$ cmd -

The steady state current limiting control can utilize the PQ priority algorithm

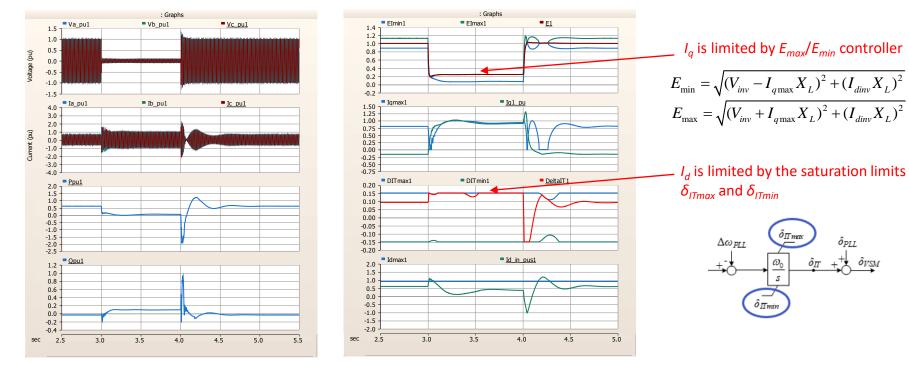

The reactive current I_{qinv} is limited by regulating the saturation limits E_{max} and E_{min}

$$E_{max} = \sqrt{(V_{inv} - R)}$$

$$E_{\max} = \sqrt{(V_{inv} + I_{q\max}X_L)^2 + (I_{dinv}X_L)^2}$$

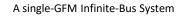
PQ Priority Algorithm to determine I_{dmaxSS} and I_{amaxSS}

Steady State Current Limiting in REGFM_B1


13


Funded by:

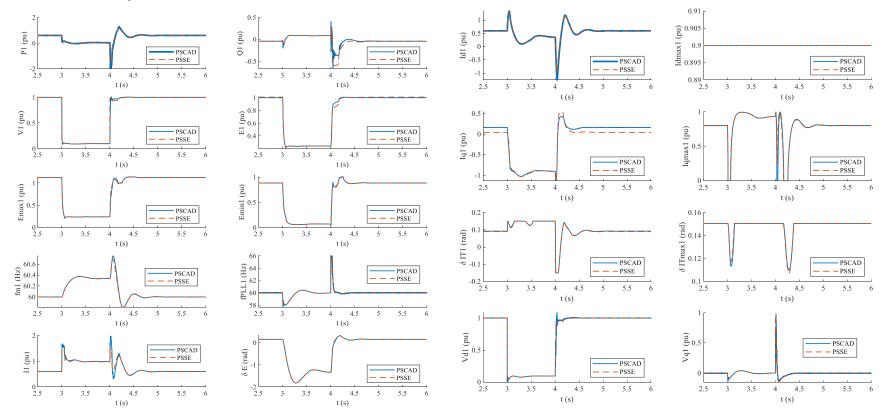
SOLAR ENERGY


1 s Fault

- The transient current limiting clips the current at I_{maxF} = 1.5 pu
- The steady-state current limiting later limits the current at $I_{maxSS} = 1$ pu
- No critical clearing time for REGFM_B1
- A real synchronous machine cannot ride-through such a long-term fault

U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES

Funded by:


14

SOLAR ENERGY

TECHNOLOGIES OFFICE

1 s Fault (PSS/E and PSCAD comparison)

• For GFMs that do not use inner current loops, the positive-sequence models can capture their transient behaviors very well

15

SOLAR ENERGY

TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF ENERGY WIND FNERGY TECHNOLOGIES

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE

Funded by:

Key Features in REGFM_A1 and REGFM_B1

	REGFM_A1	REGFM_B1
Normal Mode (No limits reached)	Droop Control	Virtual Synchronous Machine
Abnormal Mode (<i>Hit the limits</i>)	 Steady state active and reactive power limiting Transient current limiting (≈ virtual impedance) No advanced current limiting/FRT control (There is a critical clearing time) 	 Transient current limiting (≈ virtual impedance) Steady state active and reactive current limiting PQ priority algorithm to determine steady state I_d and I_q Advanced FRT control (No critical clearing time)

[1] https://www.wecc.org/Administrative/WDu-MVS-Model%20Benchmarking%20REGFM_A1%20Model_May%202023.pdf

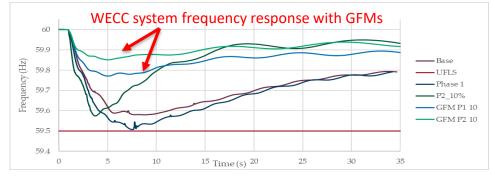
[2] https://www.wecc.org/_layouts/15/WopiFrame.aspx?sourcedoc=/Administrative/12%20-%20DuW%20-%20Virtual%20Synchronous%20Machine%20Model%20-%20REGFM-B1_May%202024.pdf&action=default&DefaultItemOpen=1

Industry Users of REGFM_A1 and REGFM_B1

• Multiple utility entities are working with UNIFI team on evaluating how GFMs impact their grids using the REGFM_A1 and REGFM_B1 models. Below are few examples

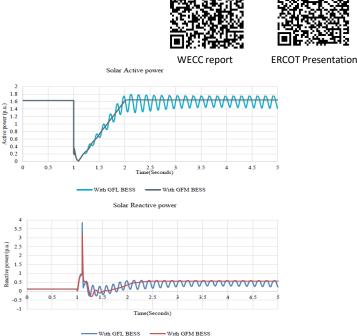
WECC report of GFM technology

17


SOLAR ENERGY

TECHNOLOGIES OFFICE

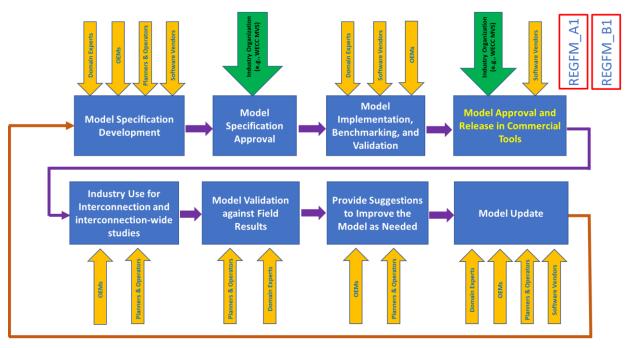
U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE


Preliminary Simulation Results from Industry Using REGFM_A1

- GFMs with sufficient headroom can significantly improve the system frequency response
- GFMs can mitigate oscillations in weak systems

GFMs can improve the frequency stability of the WECC System (Source: WECC)

WECC Recommendation: Planning Coordinators should strongly consider GFM technology when replacing synchronous generators with IBRs. They should be designed to provide reliable and robust performance that supports high IBR penetration in the Western Interconnection.


GFMs can mitigate the oscillation in the weak system in ERCOT (Source: ERCOT)

SOLAR ENERGY

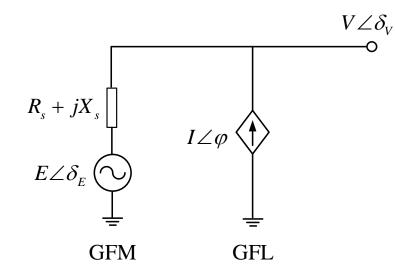
U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES 18

Conclusions and Future Work

- The REGFM_A1 and REGFM_B1 represent the first two *WECC-approved standard library GFM models*, and have been integrated into the simulation tools used by transmission planners worldwide, including PSS/E (V36.1), PSLF (V23.2.8.2), PowerWorld (V23), and TSAT (V24.1)
- As the GFM technology continues to evolve and more GFMs are deployed in the field, these models need to be further validated and updated on a regular basis in collaboration with **inverter manufacturers**, software vendors, system planners, and research institutes

As the GFM technology continues to evolve, these models need to be further validated and updated on a regular basis

19


SOLAR ENERGY

TECHNOLOGIES OFFICE

WIND ENERGY TECHNOLOGIES

Immediate Next Step

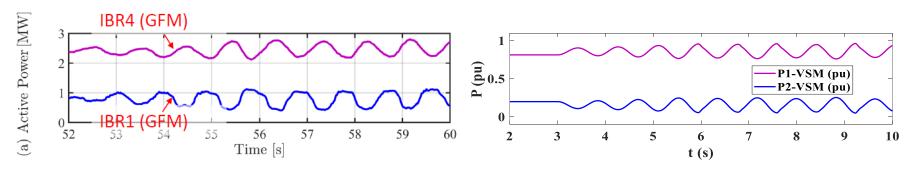
- The UNIFI Modeling and Simulation team is currently working with *Tesla*, and *WECC MVS* on developing a third representative GFM technology used in industry
- This third representative GFM technology uses the hybrid GFM+GFL approach, and both the GFM and GFL control algorithms are implemented in a single inverter, and those two control algorithms run in parallel simultaneously

Funded by:

WIND ENERGY TECHNOLOGIES

U.S. DEPARTMENT OF ENERGY WIND ENERGY TECHNOLOGIES OFFICE

consortium


universal **i**nteroperability for grid-**f**orming **i**nverters Wei Du Wei.du@pnnl.gov

Deepak Ramasubramanian dramasubramanian@epri.com

THANK YOU

1 Hz Oscillation in Kauai Island

- The REGFM_B1 model can be parameterized to reproduce the 1 Hz oscillation happened in the Kauai island
- The UNIFI team will further analyze the root cause for this oscillation mode

Field results. Event: on Apr. 30th, 2023, two GFMs oscillate against each other, and the oscillation frequency is 1 Hz. (Source: Jin Tan, NREL)

The REGFM_B1 model can reproduce the 1 Hz oscillation by tuning the parameters.

Funded by:

SOLAR ENERGY