Interconnection and Integration of Large Loads

Pooja Shah Harish Sharma

October 22, 2024

Southern Company

We provide clean, safe, reliable, affordable energy and customized solutions

> Electric & Natural Gas Utilities

9 Million

Customers

More than **28,000**Employees

Approximately **44,000 MW** of Generating Capacity

State-Regulated Utilities & Natural Gas Pipelines

Extraordinary Load Growth in Georgia

Load Growth from New Business (MW)

Note: Load is reflective of contracts signed – 2023 reflects similar volume.

3,600 MW

Customer Choice load wins since 2022 IRP Final Order to 2023 IRP Update filing

Customer Type	Load Range Per Customer
Data Center	Up to ~1,500 MW
Industrial	Up to ~500 MW

2,600 MW

Customer Choice load wins since 2023 IRP Update filing through Summer 2024

Unprecedented Load Forecast Growth

2023 IRP Update Outcome

Entire 3,303 MW Capacity Request Approved

• Includes PPAs, Battery Energy Storage Systems (BESS), Peakers, and DER programs

Load Forecast Approved

Incremental revenue forecast for the large load customers will be set as a minimum estimate for years 2026-2028 •

Transmission Approved

• Projects necessary to accommodate the loads and resource portfolio approved in the 2023 IRP Update

Additions

Our process for risk adjusting the electricity sales forecast

Adjustments are based on experience and continuous engagement with customers

Meeting Capacity Needs

|7

Transmission in Georgia

- Market structure enables visibility from generation to the customer
- In GA, the ITS is discretely owned; jointly planned.
 - Only Georgia Power Company falls under state- and federal-jurisdiction
- Established planning process to periodically coordinate regional transmission needs with neighboring utilities in AL, FL, TN, SC.
- Constructive Regulatory Environment in State of GA
- Transmission Buildout Timeline
 - ~2-4 Years to build 115 kV transmission system
 - ~3-5 Years to build 230kV transmission system
 - ~7-8 Years to build 500kV transmission system

System Interconnection and Integration – Technical Studies

Large Data Center Loads – Key Considerations

- Power Quality
 - Harmonics, Voltage fluctuations/flicker
- Transient Stability
 - Voltage recovery, frequency
- Small Signal Stability
 - Forced oscillations at low frequencies
- Resonance Stability
 - Exciting torsional modes of nearby units
- Other
 - Ramping rate, ride-through requirements

Typical Data Center Layout

Customer Load Data Requirements

- Questionnaire has been adapted from NERC's Data Center Information Collection Form
 - To be filled by customers
- Total rated load (MW and PF) with the split for individual load components
 - IT equipment (computing/server)
 - Cooling load (motors and drives)
 - Other
- Voltage and frequency ride through response of the IT equipment and the Cooling load during supply voltage/frequency excursions
- Load profile showing variations in active and reactive power

Harmonics Analysis

• As per Southern Company Power Quality Policy¹, voltage and current harmonics at Customer's Point of Common Coupling (PCC) need to be limited to acceptable values

- Electromagnetic Transient (EMT) model of the system can be used to estimate expected voltage harmonics at PCC
 - Customer provided current harmonics injection spectrum
 - Background voltage harmonics
- Mitigation options
 - Filter banks

TABLE I-3a: Odd Harmonics Current Limits for Systems Rated Greater than 161 kV						
Individual Harmonic Order						
Isc /IL	h < 11	$11 \le h \le 17$	$17 \le h \le 23$	$23 \le h \le 35$	35 ≤ h	TDD
≤25*	1.0	0.5	0.38	0.15	0.1	1.5
25< 50	2.00	1.00	0.75	0.30	0.15	2.5
≥50	3.00	1.50	1.15	0.45	0.22	3.75

Voltage Fluctuations/Flicker Analysis

- System voltage fluctuations is a concern if the load profile is variable
- EMT model can be used to estimate RMS voltage fluctuations and resultant flicker (Pst¹) at PCC

 Example results shown below for a preliminary load profile (variable and cyclic)
- Mitigation options in case flicker estimate exceeds the limits in the Power Quality Policy
 - Changes in load profile (magnitude and/or frequency of fluctuations, waveshape etc.)
 - Industrial Static Synchronous Compensator (STATCOM) within the facility

Pst Limit	Customer's Pst Contribution Estimate
0.8	1.04

¹Pst = A measure of short-term perception of flicker obtained for a ten-minute interval

Transient Stability Analysis

- Key concerns
 - Transient voltage recovery (postdisturbance)
 - Rotor angle stability
 - System frequency regulation
- Need for accurate dynamic modeling
 - Complex/composite load models (e.g. CLOD, CMLD in PSSE)
 - Switchover to backup generation
- A mitigation solution such as a STATCOM may be needed

Small Signal Stability - Forced Oscillations

- Potential for forced oscillations in system due to periodic changes in active power
- Can interact with natural modes of power system (Interarea: 0.1-0.5 Hz, Subregional:0.5-0.8 Hz, Local:0.8-2.0 Hz, Units: 5-30 Hz)
 - Propagate over a wide area
 - Energy magnification (resonance)
- Potential solutions
 - Novel technologies like E-STATCOM at PCC
 - Solutions provided by customer at LV level
- Need for appropriate monitoring (e.g., Phasor Measurement Units) and tools to detect oscillations

Summary

- Large loads such as Data Centers could potentially impact Power Quality and System Stability
- Comprehensive analysis is important to identify potential issues and evaluate mitigation options
- It is important to seek accurate modeling data especially load profile
- Developing study processes, technical requirements and operation protocols for smooth interconnection and integration of large loads
- Pre and Post commissioning monitoring would be important to ensure the load is operating as expected and is meeting requirements

Southern Company