

ESIG Session 4B: Distribution System Resilience and the Role of DERs

James Gaughan

Director, Distribution Planning

October 22, 2024

New York Clean Energy Goals and Changing Grid Needs

- CLCPA sets out ambitious goals to reach 70% clean electricity generation by 2030 and 100% by 2040
- As a result, Con Edison and New York State will have to navigate the following challenges:
 - Increased penetration of renewables to meet CLCPA goals, resulting in more distributed and intermittent power generation
 - High load growth primarily driven by transportation and building electrification, resulting in increased reliability needs
 - Building electrification is **increasing winter peak loads** in addition to summer peaks
- Recognizing these challenges, Con Edison is interested in the role of grid flexibility to maintain a high level of reliability (or even increase reliability) through the clean energy transition, and enable a transition that is efficient, orderly, and cost effective

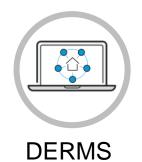
What is Grid Flexibility?

Utilities around the world say:

- The ability to change generation and consumption patterns to support the electricity system
- Technologies that can be deployed...to allow the power system to quickly respond to changes
- The change of...load...in response to market signals
- Utilizing variable power sources...to balance supply and demand

New York State says: The grid's ability to shift either demand or supply to meet bulk power system and/or local distribution system needs

Con Edison Programs and Initiatives Enabling Flexibility Today

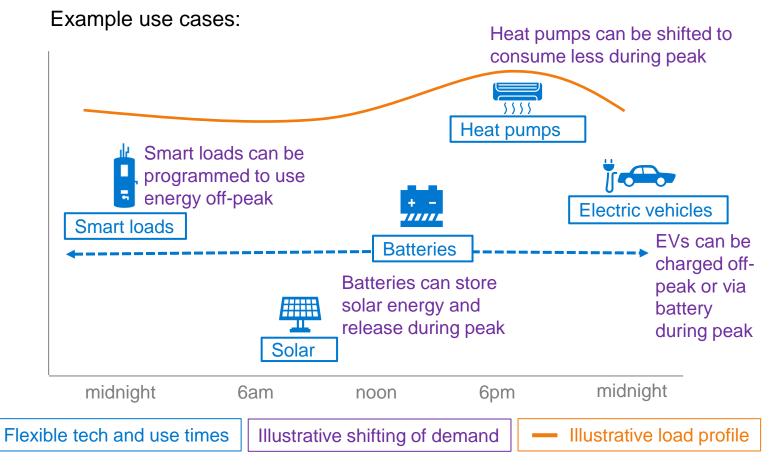


EV managed charging

Energy storage (utilityintegrated storage, utility dispatch rights)

Targeted demand management (demand response, non-wires solutions)

Energy efficiency incentives (building controls, heat pumps)



The Role of Flexibility in the Grid of the Future

Flexibility can enable the following grid and policy goals:

- Effectively managing grid costs
- Enhancing grid reliability and resiliency
- Enabling renewable resource integration
- Accelerating electrification
- Reducing emissions
- Benefiting disadvantaged communities
- Improving the customer experience

An orchestrated portfolio of flexible resources on the grid of the future can help shape load profiles

Grid of the Future Regulatory Proceeding

Objective	Unlock innovation and investment to deploy flexible resources – such as distributed energy resources and virtual power plants – to achieve clean energy goals at a manageable cost and at the highest level of reliability				
Scope	Impacts all levels of the grid, from the grid edge , to the distribution and transmission systems, to generation , by exploring:				
	1. Flexible resource 4. Rate and utility bill price- 7. Physical and cyber security deployment signals protocols				
	2. Distributed system platform5. Responsibilities of industry parties8. Temporal and geographic variability				
	3. Flexible resource valuation and compensation6. Digital technology and information infrastructure9. Allocation of costs and benefits				
	November 15, 2024: Complete Grid Flexibility Study				
DPS Staff Approach	• December 31, 2024: Complete first iteration of the New York Grid of the Future Plan				

• December 31, 2025: Complete comprehensive Grid of the Future Plan

Con Edison Approach to the Grid of the Future

Goals for 2024:

Develop a roadmap for flexibility at Con Edison Create a flexibility strategy for customer programs Identify possible new flexible resource offerings

Key Considerations:

- Encourage flexible resource adoption and installation of enabling technologies to increase realizable potential and unlock additional use cases
- Send clear, increasingly dynamic price signals to customers through utility program incentives (as opposed to static rates), indicating where to install flexible resources on the grid
- Enable integration of flexible resources into utility digital platforms while adhering to cybersecurity best practices
- Leverage automation to increase reliability of resource participation in events

Flexible Resources and Enabling Technologies

Sector	F	lexible resource	Enabling Technology	
Buildings		HVAC For example: heat pumps, electric boilers, chillers	Building Energy Management System (BEMS) Smart Thermostat	
		Water heating	Home Energy Management System (HEMS) BEMS Smart Water Heater	
		Other building load For example: lighting, appliances	BEMS HEMS Smart panels	
Transportation	ER	Electric vehicles For example: light duty, medium/heavy duty	EV telemetry or smart chargers Bi-directional chargers and EV software	
Energy	Multi-DE	Energy storage	Smart inverter	
	2	Solar		
Tools that enable technologies to be connected, disconnected or monitored on the grid			AMI Meter Collar	

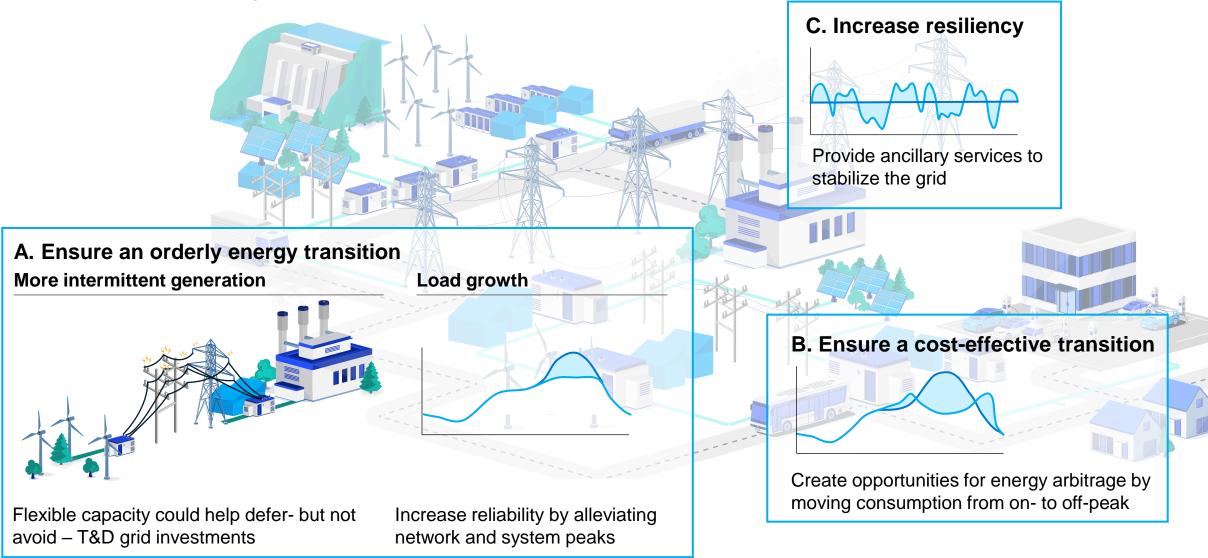
Actions That Can Be Taken By Flexible Resources to Support the Grid

Types of actions	Description	Illustration	Expected frequency of dispatch
Shift load permanently	Permanently change timing of consumption and demand		Daily
Reduce load on short notice	Eliminate or defer consumption		10-15 times per year
	Dispatch energy on short notice to alleviate temporal peaks		
Dynamically adjust load (ancillary services)	Fast ramp up or down of demand and generation		Numerous times per day

Source: DOE Pathways to Commercial Liftoff: Virtual Power Plant

Grid Needs that Flexibility Can Address

Grid needs	Description	
Bulk system capacity	Alleviate bulk-system capacity constraints to handle increased loads	
Network Capacity	Alleviate physical constraints and increase hosting capacity to support increased loads and additional DERs	
Resource and energy adequacy	Ensuring that there is enough capacity and energy to meet expected load demand	
Contingency support	Transferring load during unexpected outages (e.g., equipment failure)	
Supply/demand balancing	Balance the distribution of electrical loads to avoid overloading system components (e.g., to balance renewables)	
Voltage support	Respond to fluctuations in voltage levels in real time	
Frequency stability	Manage frequency instability to maintain interconnection frequency at 60 Hz	


Vision for the Evolution of Interconnection Process

Flexibility Recognizing Heterogeneity	Excellence over Compliance Framework	Education and Outreach during Incipiency	
Project Diversity	Outcome Focused	Incipient Market Phase	
 Project variation, e.g., size, engineering complexity and export impacts interconnection cost/timeline 	 Interconnection is today process focused when customers are focused on outcomes 	 New developers and new technologies require sustained education and outreach 	
Grid Diversity	Excellence Based		
 Local grid based on topology and proximal resources can offer opportunity or constrain 	Framework that encourages excellence over lowest common denominator offers more benefits		
Location Diversity	Innovation Grounded		
 DER locations can impact policy considerations such as resiliency in disadvantaged communities 	 Framework needs to be grounded in innovation and improvement for nimble evolution 		
Business Model Diversity			
 Customers have varying business models dictating their financial and operational constraints 			

Flexible resources can enable a more orderly and costeffective energy transition

Conceptual view of the grid of the future

ConEdison

ESIG Session 4B: Distribution System Resilience and the Role of DERs

James Gaughan

Director, Distribution Planning

October 22, 2024

