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Black start Resources
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black start units

NERC definition:
“A generating unit(s) and its associated set of equipment which has the ability
to be started without support from the System or is designed to remain
energized without connection to the remainder of the System, with the ability
to energize a bus, meeting the Transmission Operator’s restoration plan needs
for Real and Reactive Power capability, frequency and voltage control, and
that has been included in the Transmission Operator’s restoration plan”
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Black Start Stages

The black start process can be divided into three stages:

 Preparation stage f::‘;i’:‘:“a' E:;ac':(g::; :
. . approach i

« Network reconfiguring pproac paradigm
Conventional r i Eﬁ‘ b

* Load restoration centralized M‘ =) 5
BS units to

A typical restoration plan for bulk power system includes the following start the

essential steps:

network
° System status identification: blackout boundaries and location in
respect to critical loads, status of circuit breakers, capacity of available
black start units, etc.

. Starting at least one black start unit to supply critical loads such as ’,// o,
nuclear or large thermal power plants

° Progressive restoration: step-by-step supply of other loads avoiding Passive ,";VIicrogrids
over and under voltage conditions loads, :" _\‘,_

The restoration strategies: waiting to be |\\ ah

*  Serial —simpler strategy, slower but more stable energized '4,"

*  Parallel — quicker but more complex B -t



Configurations of Integrated PV/BESS Plants for Black Start
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NWTC Controllable Grid Platform

Regular grid,
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Black-start of Wind Power Plant (13.2 kV system)

eircuit breaker \

[ TA=2
.| et
L —
peoed PEETTIYY CART Turbines
I J-._] Energize CGI first,
:._._.Jw and then close this
thedd
Onnhnl

waw /e Sigmens 2,3 MW
?ﬁM\'A

..:{TJ [eHCHe
:\ -------- TANG, 275 m amd.'l-l

AREAY 345
TS&M\M

i;;\;m Gamesa 2 MW

Grid form|ng r—l--‘—ﬁnmm- CGI DAS ; F ii"— 5
inverter—7 MVA?" \w:: e B ’ Rl
. — : MOV Failure Point Ll A
T o rry [ oo =3 ) .
|£‘=ih—e:»— e P [ | s plstom 3MW
BATT - " MG | 1 TANG 52I% MVA
i b sk W i wma i e et ! ; . DAS System
e L — | B
| [N | :::‘I F :‘I}
| " |
e e Pimie | GELEMW. o
—a:r—-—ji—-—-— [ Sy G
e : | (el
mm GE 2.75 MW Inverter - 3 MVA "'"""I_-_@::m
{operated 2 STACOM]. Significant overvoltage
. . - 25
BE =| 1 = | ] I
ni'w,raL:-._ ~ T 15 |
ST E‘ 10
= 3
g o
. . g
Main problems: Solutions: S 1
*  Harmonics / resonances *  Additional filtering o \ [
. . . . . a5 \ | \ \
*  Grounding / protection *  Transformer neutral point grounding resistor o oot o002 o005 o000 005 006 007 008 008 01
*  Grounding transformers TIME (sec)

. Inrush currents

e Oversized inverter (40 MVA SC capability)
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Distribution System Testbed for Islanded Testing
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Distribution Circuit Restoration with BESS

Motor start event
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Fault-ride Through in Grid Forming Mode
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PV-BESS Black starting a Gas Turbine Generator

PV Plant Power Plant Aux Loads

sess } Il —— S e

Ls = Bl 13.2 kv/480V
- 3 =
480V/13.2kV

Main challenge:

* Energizing transformers and feeders

* Mid-size gas turbines employ starting motors

* Black start inverters need to be sized to provide necessary inrush current

Conventional power Plant

Possible solutions:

e Oversized inverters for inrush current

e Equip all plant motor loads with soft starters of VFDs

e Partial solution — energize transformers with tap positions at highest number of turns
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Constant VV/Hz Soft Start
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PV Inverter + VFD functionality

Water Tank

PicoCell 3500

PV Solar Array 1

AC Water Pump PV Solar Array 2
Source: SunTechDrive

Off-grid solar PV water pump - 3phase

o e Solar MPPT control combined with VFD function
ver-current, over-voltage and over

temperature protection e Motor soft sta rting

Implemented in 1-3 HP systems * Matches solar output and motor loading

e Extends useful pumping time
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Start-up of a DFIG-Based ROR Plant

DFIG with Inner Current Control Loops

Synchronizing Breaker
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Fig. 1. Circuit and control diagram of a doubly-fed induction generator (DFIG).
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Startup Sequence

Startup Sequence

DFIG is enabled after Deblocking GSC | Deblocking RSCin Closing Synchronizing Change RSC Mode from Voltage| | Stert Active Power Generation
0.2 1 Grid Sync Mode Breaker after 10s to Power Control
| \Y4 V V V
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DC-Bus Control by Storage for Black-Start Grid Synchronization Normal Operation

Grid Synchronization

Summary

»  Grid synchronization by locking dg frames of

s DFIG and grid, and matching stator voltages with
grid voltages

e  Further Work

— Implementation of dc-bus control using storage for
black-start

— Coordination of multiple units — grid-forming
control
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HPP / Ultracapacitor Energy Storage for Improved

Restoration Process
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* INL-NREL project

* Industry partners:
* Idaho Falls Power
* Siemens 2"
*  Maxwell 9




Grid-Forming Inverter from Qutside

* BESS Inverter

* Impedance
measurements can
quantify different

aspects of grid-
forming ability
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Conclusions

) Synchronous generator

Synchronous condenser

* Today and future restoration strategies should
align with the changing network paradigm T gy Field current limit
* Modern grid forming inverters can contribute into Llxive

power Armature heating

black start / restoration with more superior factor constraints saTcom
reactive power capabilities compared to l e
conventional synchronous generators T P fwl N

* Inherent inverter current limit is one most Leading Type 4 wind turbine
important factor for black start applications foctor Leading a

Winding end region heating limit
Under excitation limit Type 3 wind turbine
Puin Prmax

(prime mover limit) BESS Inverter

Recommendations

*  Fault performance of grid forming inverters — needs to be robust and standardized

* Seamless transition between grid forming and grid following is important, but do we really need grid following mode?

* Impedance characterization of grid forming inverters

*  @Grid stability impacts of grid forming

* Validated grid forming inverter models are needed for various renewable and storage technologies for successful
black start studies

* At scale PHIL testing of black start-capable renewable resources is an important tool to discover potential issues, test
mitigating solutions and validate models NREL | 19
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