

Grid Stability Services: Demonstrating a New Framework on a Large, High IBR System

ESIG Fall Technical Workshop | October 2024

Agenda

- Motivation
- Framework Overview
- Applying & Benchmarking the Framework
- Learnings & Next Steps

Key Questions for Grid Stability Services

Stable Operation at 100% IBR is Possible... What Stability Services are Needed to Get There?

		1
	~	
	~	
	~	
	<	

It's more than just inertia...

How much?

What are the units? How does different grid conditions change it?

How fast?

Fast and slow and sustained, it's all needed.

Where?

Location matters... more for some services than others.

There has been substantial progress in the industry here

Our work is focused on **quantifying** services

- Generalized
- Technology agnostic
- Repeatable

To develop a **framework** that can be **rolled out to all system operators & planners**

Stability Services Framework Overview

4

What Can Provide These Stability Services?

Resources, Direct Impact to Services

- All resources may provide one or more of the services
- The services rendered depend on the resource's characteristics & operating condition

Transmission, Indirect Impact to Services

ENERGY

Can "move/deliver" services to different locations

5

How Are We Testing the Framework?

Regional Grouping Analysis

Objective: Group not by historical/ownership boundary, but by electrical attributes Electrical attributes include both topology AND resource characteristics

Groupings, Geographically

Resource Characterization

Generators are characterized in fast, medium, and slow time frames using frequency scans

Resource Characterization Analysis

Generator characterizations in frequency-domain are validated against time-domain

Resource 1 – SM | Resource 2 – Type 2 WTG | Resource 3 – IBR

Inventory of Services – Provisions

MVA of Online Resources [SM, IBR]

Fast Active Power $[\Delta MW/\Delta f_{pu}]$

Fast Reactive Power $[\Delta MVAr/\Delta V_{pu}]$

Slow Active Power $[\Delta MW/\Delta f_{pu}]^*$

Slow Reactive Power $[\Delta MVAr/\Delta V_{pu}]^*$

*Slow services are limited by headroom

Need for Stability Services

Generation Contingencies

- Trip single largest generator by MW output in each "Group"
- Usually also the largest by MVA, but not always

Transmission Contingencies

- Trip single line/transformer with highest MW flow in each group
- These are usually within a group or to the external system (flows between groups are usually not high)

Monitor Dynamics

- Voltage & frequency of buses, aggregated by "Group"
- P & Q of all resources, aggregated by "Group"

Benchmarking: Framework v. Dynamics

E

E

While the generation lost in Group 3 is smaller, but with fewer services in the region, the local stress is more pronounced

Framework Applications

- Highlight in future scenarios / resource portfolios where there are "weak pockets" lacking sufficient services
- Inform how transmission investments may be located to deliver energy AND stability services
- Identify potential plant retirements that would likely to cause stability problems
- Inform where **Grid-Forming (GFM) inverter technology** should be strategically located, and how much, what reserves to maintain
- Show how changing grid operations (even within a day/week/seasonal) can impact the level of services and therefore, stability

Applications for Planning

Applications for Operations

Findings & Next Steps

Initial Findings

- Services framework is a fast way to understand large system stability & risks
- Model quality is foundational and continues to be a challenge
- Applications in planning and operations horizons

Next Steps

- Test framework for higher IBR futures 80%+ IBR
- Evaluate the impact of new transmission projects
- Evaluate the impact of GFM v. GFL dominant futures

Thank You! Questions?

Special thanks to our sponsors!

O S E N E R G Y

SPP Southwest Power Pool

Nicholas Miller

Matthew Richwine

Julia Matevosyan

Andrew Siler

Deepak Ramasubramanian Sushrut Thakar

HickoryLedge

TELOS ENERGY

