Probabilistic Methods Applied to MISO's LRTP Business Case

ESIG Spring Technical Workshop March 19th in Austin, Texas Session 6A: Transmission Planning

MISO key facts

MISO applies probabilistic methods to several processes

System
PlanningMarkets &
OperationsMarkets &
Digital
Strategy

✓ LOLE/PRM Study

✓ Operations Risk
Management

✓ Strategic
Assessments

✓ LRTP Business
Case

Probabilistic methods applied to LRTP T2.1 Business Case methodology

•	Leverages information	LRTP T2.1 Benefit Metrics					
	from ESIG's Multi-Value Transmission Planning for a Clean Energy	¹ Energy savings from reduced losses	² Capacity savings from reduced losses	3 Decarbonization			
	Future	Mitigation of reliability issues	5 Congestion & fuel savings	Avoided transmission investment			
•	Integrates transmission planning and RA into a single study framework	Avoided Capacity Cost	⁸ Reduced risks from extreme weather impacts	9 Reduced transmission outage cost			

RA: Resource adequacy | LRTP T2.1: Long-range transmission planning tranche 2.1

RA: Resource adequacy | LRTP T2.1: Long-range transmission planning tranche 2.1

Integrated transmission & RA method adopted in LRTP T2.1

LRTP T2.1 RA model

RA: Resource adequacy | LRTP T2.1: Long-range transmission planning tranche 2.1 | EXT: External

Benefits reflect increases in transfer capabilities across the footprint

RA: Resource adequacy | LRTP T2.1: Long-range transmission planning tranche 2.1 | EXT: External

Avoided capacity cost benefit (ACC)

How much capacity can LRTP T2.1 avoid?

LRTP T2.1 "base" **RA** model "Base" case

reserve margin

LRTP T2.1 "change" **RA** model "Change" case reserve margin

Avoided capacity cost benefit (ACC)

Benefit is monetized by calculating the present value of the incremental capacity need using a resource expansion model

Reduced risks from extreme weather impacts benefit

- Focuses on the "worst" events
- Same assumptions & method as the ACC benefit metric
- Combines RA metrics and scarcity pricing
- Probability of occurrence must be defined

Illustrative distribution of risk

Reduced risks from extreme weather impacts benefit

	Expected Unserved Energy during top 20% worst													
	events								1					
Cases	2007	2008	2009	2010	2011	2012	2014	2015	2016	2017	2018	2019	2020	2021
Without T2.1														
With T2.1														
High s	everi	ty		1	Medi	um s	ever	ity		L	-ow s	sevei	rity	
11		\wedge	Нра	t wa			***	Po	ar V	orte	x			

Reduced risks from extreme weather impacts benefit

RA: Resource adequacy | LRTP T2.1: Long-range transmission planning tranche 2.1 | EXT: External

When all 9 benefits are included, the **LRTP T2.1** benefit to cost ratios result in 1.9-3.8

How can the Probabilistic Methods developed in MISO's LRTP T2.1 business case be extended to other processes?

LRTP T2.1 Benefit Metrics							
Energy savings from reduced losses	Capacity savings from reduced losses	Decarbonization					
Mitigation of reliability issues	Congestion & fuel savings	Avoided transmission investment					
Avoided Capacity Cost	Reduced risks from extreme weather impacts	Reduced transmission outage cost					

Thank you!

Armando Figueroa Acevedo, PhD, PE afigueroa-acevedo@misoenergy.org