

Creating Hourly Weather Timeseries for Future Climates

Approaches to Forward Looking Datasets

David Larson, PhDTechnical Leader, EPRI
DLarson@epri.com

in X f

Acknowledgements

Erik Smith, PhD
Technical Leader
EPRI

Delavane Diaz, PhDProgram Manager
EPRI

Dan Kirk-Davidoff, PhDSr Technical Leader
EPRI

Felicia Chang, PhD
Research Staff
EPRI

Motivating example: Resource Adequacy

Need hourly data that reflects future weather extremes

Need hourly resolution, forward-looking weather data

- Global Climate Model (GCM) data is widely available...
- But GCM data is typically daily resolution

- Interpolating (daily-to-hourly) is simple...
- But can miss important patterns

- Customized dynamic downscaling is powerful...
- But is typically expensive and not widely available

What can we do today?

Idea: combine historical data and climate projections

Historical Data	Climate Projections
Hourly data	Daily data
 Realistic variability Scales of weeks, months, & years from 72 years of historical weather (1950-2021) 	 Limited variability Variability is constrained to the underlying physical model; typically not well-captured
Historical years only - Can't represent weather extremes that haven't happened	Future years + historical simulations - Can capture how the climate will change - Can represent weather that has never happened
Preserves physical link between variables - Variables are dynamically consistent since they come from the same dataset (ERA5)	Projection data lacks variables at hourly resolution - Physical link is absent when interpolating daily data or using variables from different sources
All variables available - i.e., 10 m & 100 m wind speeds	Limited number of variables - i.e., 10 m wind speeds only

Important or desired characteristic

^{*}Note: we currently only shift temperature profiles (and precipitation where relevant), maintaining historical hourly correlation with wind and solar (which haven't been shown by GCMs to shift distribution)

High-level overview of our method

Can use multiple GCMs as input

How much data does this method generate?

years of historical data

X

climate models

X

emission scenarios

Example:

- 72 years historical data (ERA5)
- 5 climate models (CMIP6)
- 2 emissions concentration scenarios

= 720 Wed per to

Weather year profiles per target study year

720 versions of 2030 weather

What does the output look like?

- Timestamp
- 1 column per GCM and emissions scenario

- Example: GFDL_SSP370
 - GFDL = GCM
 - SSP-3.70 = higher emissions scenario

Simple formatting (CSV) compatible with wide range of tools

Examples

Synthetic data captures peaks and natural variability

- Historical (actual)
- Synthetic (SSP 1-2.6)
- Synthetic (SSP 2-4.5)
- Synthetic (SSP 3-7.0)
- Synthetic (SSP 5-8.5)

Shifted temperature hourly timeseries (2050 climate)

Also capture extremes (tails of the distribution)

Distribution of temperature in historical vs synthetic vs GCM

Method allows capturing differences in GCMs

(a) Colder Model

(b) Warmer Model

Shifted temperatures between a "colder" and "warmer" GCM

1980 (a warm year) shifted to 2050 synthetic profiles*

25 hours > 100°F

^{*}Based on one GCM (MRI). SSP126 is a lower climate scenario, SSP370 is the higher climate scenario.

Next Steps and Discussion

Summary

- Need hourly resolution, forward-looking datasets for a range of power system studies and applications
- Presented method to combine GCM projections (forward-looking) with historical data (hourly) to create realistic synthetic future weather data

Benefits of Synthetic Profiles for Future Climates

- Provides hourly projection data when critical for the application
- Captures real-world variability from 72 years of historical data
- Potential to create 1000s of realistic climate-adjusted profiles
- Preserves the physical link between synchronous meteorological variables (temp / wind / solar / precipitation)
 - Not all variables need to be adjusted
- Can include historical years in future scenarios as a lower bound for risk assessments particularly concerned with extreme cold

Limitations

- Point-specific
- Primarily just for temperature
- Can't capture extremes far beyond historical record

More info: contact Erik Smith <ESmith@epri.com>

Related Resources

EPRI R&D Initiatives

Climate READi

 Strength the power sector's collective approach to managing climate risk to the power system

Load Forecasting Initiative

 Address critical needs in load forecasting across operations and planning timescales

https://www.epri.com/READi

https://msites.epri.com/LFI

Resources from EPRI's Climate READi:

Climate Data Users Guide

Climate Data Inventory

Climate 101

...and more available at https://www.epri.com/READi

Two relevant public reports:

Guidance on Weather Datasets for Studies

READi Insights: Downscaling

Example of how daily-to-hourly interpolation fails

Historical climate extremes in a future climate

- The climate warming signal is removed from the historical data
 - Puts emphasis on natural variability
 - An extreme heat
 event in 1980 may be
 more extreme than an
 event in 2016 from a
 natural variability
 standpoint

More synthetic years captures more extremes

