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Agenda

= How forecasting aligns with system
operations (Aidan)

= Market Operations Overview and Role
of storage, Hybrids and DER (Erik)

= Panel session

— Forecasting Hybrid and Co-Locate
Resources, Amber Motley, CAISO

- Market participation of hybrid resources,
Mark Ahlstrom, NextEra Energy

= Discussion, Q&A
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Bulk System Forecast Uses

Focus of this discussion
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Forecast Classification

Renewable Power Forecast
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Any renewable forecast will be combination of these
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Terminology across different functions

Forecasting System Operations
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Figure 1-1 lllustration of a forecast issued at 5:00am with a horizon of 1-hour, run length of Unit
2 . Govenor LFC
1 hour and four 15-minute intervals. Response
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Questions for the audience

= |s your expertise on forecasting, market
operations, both or none?

= Do you already have a good idea of how forecasts
are used in operations or do you want to know
more in that area?

= Do you interact with forecasts often in your day
job?

= Do you interact with market operations often in
your day job?

= For emerging resources such as storage, DER, - ——
hybrids, how important do you think forecasting
is? More/less/about the same as for how we
think about VRE
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EPRI Short Term Forecast Integration Efforts
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fwz | Solar Forecast Performance Utility Trials

Operational Probabilistic Tools for Solar Uncertainty
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( gw Forecasting Improvement Projects

Artificial Neural Network Short Term Load Forecaster
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Solar forecast performance across vendors and locations
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Performance varies widely for different forecasters and across solar farms,’
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More uncertainty in performance than summary meirics show
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Forecast Arbiter: hitps://solarforecastarbiter.org/
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https://solarforecastarbiter.org/
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Forecasting Trends

e Satellite imagery for
intra-day (<6h)

e Deep learning interest
(research and
vendors)

e Models not relying on
measured power data

e Sub-hourly resolution
e Probabilistic forecasts

e Probabilistic forecasts

e Offshore wind forecast
emphasis

e Deep learning interest
(research and
vendors)
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e |ncrease spatial and
dist level forecast

e Accounting for
behind-the-meter
solar

e Accounting for
batteries/DER

e Changing demand
profile (COVID-19,
remote work)

e Extreme events
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Days Out Forecasts Help Develop Scenarios to Improve Reliability
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Load Forecasting — Before Adding DER/Behind the Meter

History N
= Continuous 1-7 day region-level load .
= 20+ yearsofR&D ANLE
— First NN-based load forecaster - gjﬁ":
= Used by many operators & traders .
B Ongoing Supp 12+ members = ] © 3013 o ic v st o bl . A ighs s 1 |

Competitive performance
Example Annual Performance for 3 Regions

— 3% MAPE or less
. Combined ANNSTLF & HbH-
Data required o Reglon ANNSTLF MAPE

— Single point actuals & forecasts Peak Load m Peak Load m

= Temp, Humidity

— Holidays, half-holidays ISONE 2.4 2.0 2.1 1.7
ALTW 2.8 2.5 2.3 2.1

Operational load forecaster benefitling members for over 20 years
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Understanding Impacts of Distributed PV on Load Forecasting

= Continued growth of distributed PV (DPV) is changing loads at all
levels (customer, utility, ISO/RTO)

= Forecasting approaches for traditional loads

are mature, but not designed for high levels
of DPV

= Need to study effects now to plan for future:
— Data sources

— Infrastructure

- Forecast methodologies

Real Time estimation of solar power
in Germany (provided by energy & meteo)
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Probabilistic Forecasts

= Probabilistic forecasts provide users with
valuable information on uncertainty

= They are composed of probabilistic thresholds
in which the variables are expected to
materialize:

— A 100% threshold indicates total certainty of the
variable being within the band

12000]-
10000]-

8000[

MW

6000} - Lower probability thresholds indicate that the
likelihood of the variable being within a narrower

band (e.g., 95%)

— Area between thresholds represent the probability
of the variable materializing only in that space (e.g.,
(97-96)/2 = 0.5%)

— The redline represents the central expected forecast
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Why use probabilistic forecasis?

Takes advantage of risk-based methods
such as stochastic programming

= Captures outliers (assuming data is
representative)

Source: David Magoio, Using probabilistic information in real Iife, 2011 UWIG F orecasting Workshap

= Should be more economically efficient |
while can also be more reliable than ) en
traditional methods |

power [% of Pn]

= May give us better rationale for
responding to some extreme events, e.g.
extreme cold

5 10 15
look-ahead time [hours]
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Quantifying Forecast Value

What is the value of improving
MAPE by 0.1%? One forecast vendor has a lower MAPE

but another better forecasts the peak,
which is better?

%

Group 1 e Value as a function of forecast error
Analytical e E.g., S per 1% MAPE reduction
Formula e Usually based on historical values or expert estimates

Group 2 e Simulate market operation ED/UC
Production-cost e Feed forecast scenarios into simulations
Simulations e Compare resulting economic impacts
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Key Takeaways

= Forecasting is widely used across all operations practices
— While scheduling is most obvious, other applications also relevant
— Increasing value for forecasting
= Linking the decision making process with forecasts is important
—- Keeping decision until later can help get a better forecast
- Needs to be traded off with operating decision process on system side
= Increasingly complex data and different decision makers

— Behind the meter solar, distributed storage, hybrid plants all bring their
own complexities

— Probabilistic information becomes more important for decision makers

As the system changes, forecasting applications need to keep up

Focus today on storage, DER, hybrids and other newer issues in forecasting
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Agenda

= How forecasting aligns with system operations (Aidan)

= Market Operations Overview and Role of storage, Hybrids and
DER (Erik)

= Panel session
— Forecasting Hybrid and Co-Located Resources, Amber Motley, CAISO
- Market participation of hybrid resources, Mark Ahlstrom, NextEra Energy

= Discussion, Q&A
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