

Reliability & Resilience Through the Transition

A Decarbonized Grid must be more reliable and resilient as the grid becomes more dynamic, decentralized, and inverterbased in the context of changing climate and other hazards.

RESOURCE ADEQUACY

Additional resources to meet energy needs for resiliency to extreme future scenarios

DELIVERY ADEQUACY

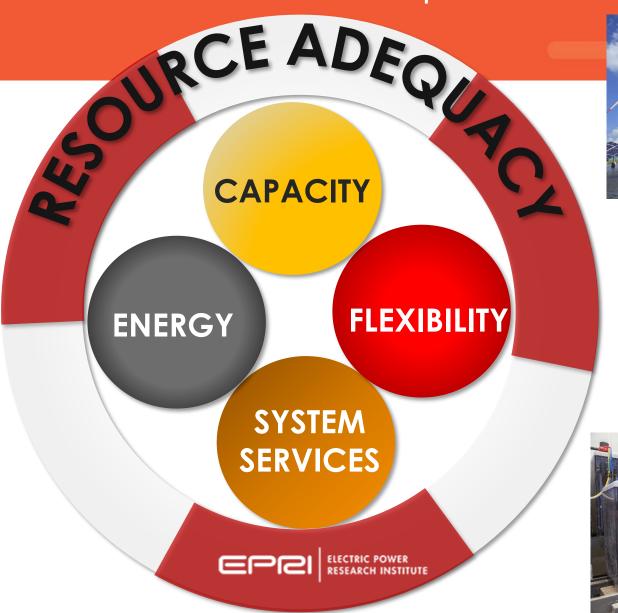
Regional T&D capacity to integrate renewables and DER and serve increased electrification demand

BALANCING AND FLEXIBILITY

Flexibility resources and operating reserves to manage variability and uncertainty

GRID STABILITY

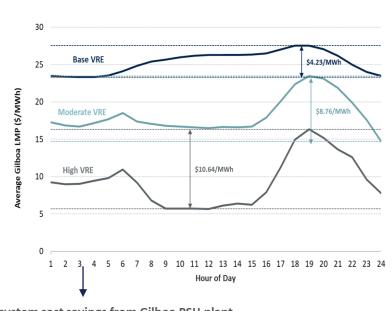
Resources and controls to maintain frequency and voltage for much faster dynamic system

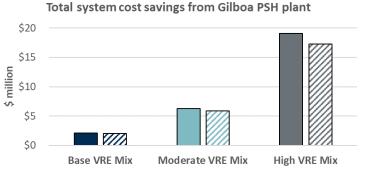


What does it mean to have adequate resources?

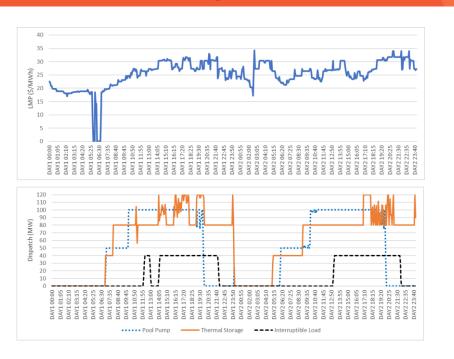
An adequate supply fleet is not just the installed MW in the ground. The capacity must have energy to sustain during critical time periods, flexibility to accommodate condition changes, and sufficient reliability services to provide when necessary

5 rved


Flexibility Will Become More Valuable

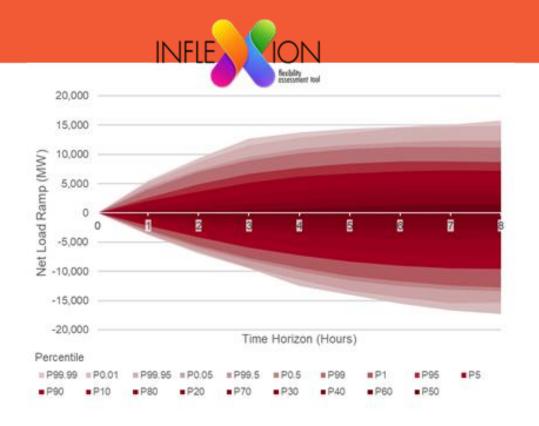

ESIG

Flexibility/ramping needs

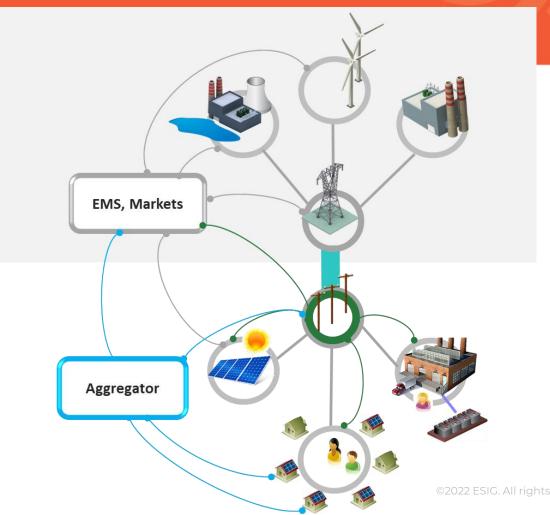

Reliability and Economics

Flexibility from traditional and emerging resources becomes more valuable

From EPRI, "Predicting Unique Market Pumped Storage Significance (PUMPSS) – Final Project Report", Forthcoming, 2022


Need to consider potential trade offs as emerging resources provide flexibility

Items	Base Case (without DR)	Study 1 (PG-M)	Study 2 (ES-M)
Total operating cost	\$86 M	\$82 M (↓ 4.6%)	\$84 M (↓ 2.8%)
Balancing Violation (MWh)	25.8	20.3	1.6
No. of Intervals with Balancing Violation	3	3	1


From EPRI, "Flexible Demand Response Modeling and Systemerved Analysis of Impacts", 3002024552, June 2022

Flexibility - measuring needs and obtaining services

Need to be able to assess what is needed, and then get it from emerging and existing resources

Distributed Resources for Grid Flexibility

Connected, Smart **Demand-**

Grid-Integrated Energy Storage Responsive Load

Flexible Load 2020:

2030:

200

GW

Smart and Fast

Charging of EV

60 GW

2020 Brattle study estimates potential U.S 2030 load flexibility at 200 GW – 20% of peak load.

Flexibility from hydrogen

- Initially expected as a source of demand side flex
 - Production of hydrogen through electrolyzers with clean electricity
 - Use in other industries as a feedstock to decarbonize there
 - Pockets may develop with unidirectional flexibility to make use of renewables and then be used from system side at other times
- Fuels can be produced away from where they are needed and transported
 - Requires consistent accounting of carbon costs/emissions
 - Could produce in places with high wind/solar potential (e.g. MENA, Australia, etc.)
 - Imported into places with less resources but suitable H₂ networks
 - US currently has 1, 600 miles of hydrogen pipelines, 320,000 circuit miles of gas transmission
 - Will also impact markets price formation, energy, capacity, etc.

ENTSO-E has formulated recommendations for policymakers on:

- The new roles of hydrogen
 Hydrogen is a tool for reaching decarbonisation targets and not an end in itself
- > Where we are now and the next steps towards bigger hydrogen The business case to use hydrogen in an electricity system operation support function does not currently exist
- Planning and operating hydrogen in 'one system of systems'
 A unified system perspective (one system view) is necessary

ENTSO-E, Nov 2021 (link)

Green hydrogen now cheaper than blue in Middle East, but still way more expensive in Europe

Mechanisms to Incentivize Flexibility

Reduce costs and improve reliability with intelligence

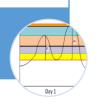
Forecasted Reserve Requirements

Value reserve above minimum requirements

Operating Reserve Demand Curve

Price opportunity costs of ramp

Multi-interval settlement


Represent uncertainty explicitly

Stochastic models, smart reserve

Make sure flexibility is built in the first place

Forward Flexible Capacity Attribute Procurement

Let demand provide flexibility

Real-time pricing, retail alignment and automation

Transparency leads to innovation

Price Formation

Reduce uncertainty directly

Enhanced Forecasting

Together...Shaping the Future of Energy®